Using permutation or otherwise, prove that \(\frac { { (n }^{ 2 })! }{ { (n!) }^{ n } } \) is an integer without using principle of mathematical induction.

Let us find the number of ways dividing \(n^2 \) distinct items into \(n\) groups of \(n\) items each. Let the number be \(N\).

Case 1: If the order matters or the groups are distinguishable in the sense that for example, out a group of \(4\) items, say, \((A, B, C, D)\) the groups \(((AB) , (CD))\) and \(((CD) , (AB))\) are considered to be different, then

\[ \displaystyle N = \frac{(n^2)!}{(n!)(n!) \dots ( n \text{ times } ) \dots (n!)} = \frac{(n^2)!}{(n!)^n} \]

Since the number of ways are always an integer, therefore \(N\) is an integer.

Case 2: If the order does not matter, then the above result can be modified as follows: The number of ways have to be reduced by a factor of \(n!\) as that is the number of ways of arranging the \(n\) groups which does not matter here.
Hence,

\[ \displaystyle N = \frac{(n^2)!}{(n!)^n} \times \frac{1}{(n!)} = \frac{(n^2)!}{(n!)^{n+1}} \]

Now if the above is an integer then definitely the expression is.

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestLet us find the number of ways dividing \(n^2 \) distinct items into \(n\) groups of \(n\) items each. Let the number be \(N\).

Case 1: If the order matters or the groups are distinguishable in the sense that for example, out a group of \(4\) items, say, \((A, B, C, D)\) the groups \(((AB) , (CD))\) and \(((CD) , (AB))\) are considered to be different, then

\[ \displaystyle N = \frac{(n^2)!}{(n!)(n!) \dots ( n \text{ times } ) \dots (n!)} = \frac{(n^2)!}{(n!)^n} \]

Since the number of ways are always an integer, therefore \(N\) is an integer.

Case 2: If the order does not matter, then the above result can be modified as follows: The number of ways have to be reduced by a factor of \(n!\) as that is the number of ways of arranging the \(n\) groups which does not matter here. Hence,

\[ \displaystyle N = \frac{(n^2)!}{(n!)^n} \times \frac{1}{(n!)} = \frac{(n^2)!}{(n!)^{n+1}} \]

Now if the above is an integer then definitely the expression is.

Log in to reply