I recently discovered a recursive identity for \(\mathrm{Li}_{-m}(z)\) for \(m\) a positive integer. Hopefully this will be of some use when tackling problems seeking for the value of some polylogarithmic sum.

\[\mathrm{Li}_{-m}(z) = \frac{z}{1-z} \left[ 1+\sum_{k=0}^{m-1} \binom{m}{k} \mathrm{Li}_{-k}(z) \right]\]

**Proof**:

Consider \(\displaystyle \sum_{n=1}^{\infty} z^n(n+1)^m\). We have

\[\begin{align} \sum_{n=1}^{\infty} z^n(n+1)^m &= \sum_{n=1}^{\infty} z^n \sum_{k=0}^m \binom{m}{k} n^k \\ &= \sum_{n=1}^{\infty} z^nn^m + \sum_{k=0}^{m-1} \binom{m}{k} \sum_{n=1}^{\infty} z^nn^k \\ &= \mathrm{Li}_{-m}(z) + \sum_{k=0}^{m-1} \binom{m}{k} \mathrm{Li}_{-k}(z) \end{align}\]

We also have

\[\begin{align} \sum_{n=1}^{\infty} z^n(n+1)^m &= \frac{1}{z} \sum_{n=2}^{\infty} z^nn^m \\ &= \frac{1}{z} \mathrm{Li}_{-m}(z)-1 \end{align}\]

Equating the two gives

\[\mathrm{Li}_{-m}(z) + \sum_{k=0}^{m-1} \binom{m}{k} \mathrm{Li}_{-k}(z) = \frac{1}{z} \mathrm{Li}_{-m}(z)-1\]

When rearranged, we obtain

\[\mathrm{Li}_{-m}(z) = \frac{z}{1-z} \left[ 1+\sum_{k=0}^{m-1} \binom{m}{k} \mathrm{Li}_{-k}(z) \right]\]

as required.

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestSimilarly \[\mathrm{Li}_{-m}(z)=\frac{\left(-1\right)^m}{1-z}\left[\sum _{k=0}^{m-1}\left(-1\right)^k\binom{m}{k}\mathrm{Li}_{-k}(z)\right]\]

Log in to reply

Nice!

Log in to reply

A point to note is that \(\operatorname{Li}_{-m} (z)\) , when \(m\) is a positive integer, already has a closed form in terms of rational polynomial functions.

Log in to reply