Prove that if the discriminant of a quadratic equation is less than zero, and the coefficient of \(x^2\) is positive then \(P(x)>0 \) for all rea values of \(x\).

In short, for polynomial \(P(x) = ax^2+bx+c\), if \(D<0\) and \(a>0\), then \(P(x)>0\) for all real values of \(x\).

Also, if \(D<0\) and \(a<0\), then, \(P(x) < 0 \).

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewest\( P(x) = ax^{2} + bx + c \)

\( P(x) = a(x^{2} + \dfrac{b}{a}x + \dfrac{c}{a}) \)

\( P(x) = a\left( \left(x+\dfrac{b}{2a}\right)^{2} + \dfrac{4ac-b^{2}}{4a^{2}}\right) \)

\( P(x) = a\left(x+\dfrac{b}{2a}\right)^{2} + \dfrac{4ac-b^{2}}{4a} \)

Now for \( a > 0 \)

\( a\left(x+\dfrac{b}{2a}\right)^{2} \ge 0 \)

\( a\left(x+\dfrac{b}{2a}\right)^{2} + \dfrac{4ac-b^{2}}{4a} \ge \dfrac{4ac-b^{2}}{4a} \)

\( P(x) \ge \dfrac{4ac-b^{2}}{4a} \)

\( D < 0 \rightarrow 4ac - b^{2} > 0 \)

\( P(x) \ge \dfrac{4ac-b^{2}}{4a} > 0 \) for all x. Similar proof for \( a < 0 \)

Log in to reply

Perfect!

Log in to reply