Proof of: $\zeta \left( s \right) =\frac { 1 }{ s-1 } \sum _{ k=1 }^{ \infty }{ \left( \frac { k }{ { \left( k+1 \right) }^{ s } } -\frac { k-s }{ { k }^{ s } } \right) }$

Now,

$\displaystyle \zeta \left( s \right) =\sum _{ k=1 }^{ \infty }{ \frac { 1 }{ { k }^{ s } } }$

$\displaystyle \zeta \left( s \right) = s \int _{ 1 }^{ \infty }{ \frac { \left\lfloor t \right\rfloor }{ { t }^{ s+1 } } dt }$

$\displaystyle \zeta \left( s \right) = s \int _{ 1 }^{ \infty }{ \frac { t-\left\{ t \right\} }{ { t }^{ s+1 } } dt }$

$\displaystyle \zeta \left( s \right) = s \sum _{ k=1 }^{ \infty }{ \left( \int _{ k }^{ k+1 }{ \frac { t-t+k }{ { t }^{ s+1 } } dt } \right) }$

$\displaystyle \zeta \left( s \right) =s\sum _{ k=1 }^{ \infty }{ \left( \int _{ k }^{ k+1 }{ \frac { k }{ { t }^{ s+1 } } dt } \right) }$

$\displaystyle \zeta \left( s \right) =-\frac { 1 }{ 1 } \sum _{ k=1 }^{ \infty }{ \left( \frac { k }{ { \left( k+1 \right) }^{ s } } -\frac { k }{ { \left( k \right) }^{ s } } \right) }$

$\displaystyle \zeta \left( s \right) =\frac { 1 }{ s-1 } \sum _{ k=1 }^{ \infty }{ \left( \frac { k }{ { \left( k+1 \right) }^{ s } } -\frac { k }{ { \left( k \right) }^{ s } } +\frac { s }{ { \left( k \right) }^{ s } } \right) }$

$\large \text{HENCE PROVED}$

No vote yet

1 vote

Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in`\(`

...`\)`

or`\[`

...`\]`

to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestNice.. If you elaborate more on how you get 2nd line from 1st line . it will help beginners.

I hope you will elaborate more

Log in to reply

I've proved it in the solution of this problem.

Log in to reply