Positive integer solutions

How many triple of positive integer \((a,b,c)\) that satisfy equation: \[\frac{c}{17}=\frac{8}{a^2}+\frac{45}{b^2}\]

Note by Idham Muqoddas
4 years, 10 months ago

No vote yet
2 votes

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Rearranging the equation we get: \[c=\frac{17\cdot 2^3}{a^2}+\frac{17 \cdot 3^2 \cdot 5}{b^2}\] Because the LHS is an integer, the RHS must also be an integer. First, let's address the case in which both fractions in the RHS are integers. Then \(a=1, 2\) and \(b=1, 3\), giving us \(4\) solutions so far.

Now note that when \(a > 11\) and \(b > 27\), the RHS is less than one, and thus cannot be a positive integer. You could easily exhaust all 297 possibilities, although I'm sure there is a better way.

Bob Krueger - 4 years, 10 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...