Waste less time on Facebook — follow Brilliant.
×

Post a solution

A complex number z is such that \(arg(\frac{z-2}{z+2})=\frac{\pi}{3}\). The points representing this complex number lie on what?? straight line or circle or parabola or ellipse.

The centres of a set of circles, each of radius 3, lie on the circle \(x^2+y^2 = 25\). The locus of any point in the set is

Find sum of this series \(\displaystyle \sum_{r=0}^{n} (-1)^{r} \) \(^{ n }{ { { C } } }_{ r } (\frac{1}{2r}+\frac{3^r}{2^{2r}}+\frac{7^r}{2^{3r}}+\frac{15^r}{2^{4r}}.......m~terms)\)

Note by Tanishq Varshney
2 years, 8 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Should the first problem be: \(arg((z-2)/(z+2))=\pi/3\)? Then the locus is a part of a circle.

Raghav Vaidyanathan - 2 years, 8 months ago

Log in to reply

yes then its easy, The question was misprinted .

Tanishq Varshney - 2 years, 8 months ago

Log in to reply

With z the equation is dimensionally incorrect.

Rohit Shah - 2 years, 8 months ago

Log in to reply

Log in to reply

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...