Waste less time on Facebook — follow Brilliant.
×

Pre-RMO 2014/11

For natural numbers \(x\) and \(y\), let \((x, y)\) denote the greatest common divisor of \(x\) and \(y\). How many pairs of natural numbers \(x\) and \(y\) exist with \(x \leq y\) satisfy the equation \(xy = x + y + (x,y)\)?


This note is part of the set Pre-RMO 2014

Note by Pranshu Gaba
3 years, 2 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

The answer is 3 i.e. (2,3) (2,4) (3,3) I did this by hit and trial method as I had realised that there won't be any pair which will have any number greater than 4 in it. So it took around 2 minutes to solve it

Mihir Chakravarti - 3 years ago

Log in to reply

the answer is 3. take g as gcd and then keep analysing number theoritically what could be the values of g.

Abhishek Bakshi - 3 years, 1 month ago

Log in to reply

I think answer is 2

Mayyank Garg - 3 years, 2 months ago

Log in to reply

Is answer 3??

Ar Agarwal - 3 years, 2 months ago

Log in to reply

Even I got 3 pairs. \((2,3), (2,4) \) and \((3, 3)\). How did you solve it?

Pranshu Gaba - 3 years, 2 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...