# Pre-RMO 2014/19

Let $$x_1, x_2, \ldots, x_{2014}$$ be real numbers different from $$1$$ such that $$x_1 + x_2 + \ldots + x_{2014} = 1$$ and

$\frac{x_1}{1 - x_1} + \frac{x_2}{1 - x_2} + \ldots + \frac{x_{2014}}{1 - x_{2014}} = 1.$

What is the value of

$\frac{x^2_1}{1 - x_1} + \frac{x^2_2}{1 - x_2} + \frac{x^2_3}{1 - x_3} + \ldots + \frac{x^2_{2014}}{1 - x_{2014}} ?$

This note is part of the set Pre-RMO 2014

Note by Pranshu Gaba
3 years, 8 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

$$\displaystyle \frac{x_1^{2}}{1-x_1} + \frac{x_2^{2}}{1-x_2}+\ldots + \frac{x_{2014}^{2}}{1-x_{2014}}$$

$$\displaystyle x_1 + x_2 + \ldots + x_{2014}$$

To the above equation

$$\displaystyle \frac{x_1^{2}}{1-x_1} + x_1 + \frac{x_2^{2}}{1-x_2} + x_2 + \ldots \frac{x_{2014}^{2}}{1-x_{2014}} + x_{2014}$$

Now taking L.C.M

We finally get

$$\displaystyle \frac{x_1}{1-x_1} +\frac{x_2}{1-x_2} + \ldots \frac{x_{2014}}{1-x_{2014}}$$

So this is equal to 1 but we have added

$$x_1 + x_2 \ldots + x_{2014 }= 1$$

So we have to subtract 1

Finally we get the answer $$\boxed {0}$$

- 3 years, 8 months ago

Nice !!!!!

- 3 years, 8 months ago

Exactly did the same

- 2 years, 1 month ago

just subtract 1st eqn from 2..u get the required 3rd eqn =1-1=0

- 3 years, 6 months ago

0

- 2 years, 11 months ago