Hello people! Today I gave my pre rmo in mumbai. The paper was pretty easy and I am confident of 14-15 right answers. But I have a few doubts and would love if anyone could solve them:

1) In rectangle ABCD, AB=8 and BC=20. Let P be a point on AD such that angle BPC=90. If r1, r2, r3 are the radii of incircles of triangles APB, BPC and CPD, what is the value of r1 + r2 + r3?

2) Let a,b and c be real numbers such that a - 7b + 8c = 4 and 8a + 4b - c = 7. What is the value of a^2 - b^2 + c^2?

3) The circle C1 touches the circle C2 internally at P. The centre O of C2 is outside C1. Let XY be a diameter of C2 which is also tangent to C1. Assume PY>PX. Let PY intersect C1 at Z. If YZ = 2PZ, what is the magnitude of angle PYX in degrees?

Thank You!

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewest. Now square both equations to get:

a2+16ac+64c2=16+56b+49b2,

and 64a2−16ac+c2=16b2−56b+49.

Adding the two equations, we get 65a2+65c2=65b2+65 . So 65a2−65b2+65c2=65⇒a2−b2+c2=1

.

This is a pretty decent manipulation problem.

Log in to reply

formula of inradius of a right triangle is= 1/2(p+b-h)

in △APB, r1=(AP+AB−PB)/2

Similarly, r2=(PB+PC−BC)/2

And, r3=(PD+CD−PC)/2

∴r1+r2+r3=(AP+AB−PB)+(PB+PC−BC)+(PD+CD−PC)/2

∴r1+r2+r3(=AD+AB+CD−BC/)2

Since AD=BC and AB=CD, r1+r2+r3=AB=8

Log in to reply

good and easy questions

Log in to reply

but tricky

Log in to reply