# Prime number!

Let p1,p2,p3 be primes with p2≠p3 such that 4+p1p2 and 4+p1p3 are perfect squares. Find all possible values of p1,p2,p3.

Note by Tarit Goswami
1 year ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

Wolog assume p2<p3.

Let 4+p1p2=m2. So m2−4=(m−2)(m+2)=p1p2 Let 4+p1p3=k2. So k2−4=(k−2)(k+2)=p1p3.

So p1=m−2 or m+2 and p1=k−2 or k+2 If p1=m−2 then p2=m+2. Then if p1=k−2 then k=m and p2=p3 which is impossible. And if p1=k+2 then p3=k−2<p1<p2 a contradiction.

So p1=m+2 and p2=m−2. If p1=k+2 we get m=k and p2=p3 so p1=k−2 and p3=k+2.

So p3=p1+4=p2+8.

If p2=2 then p1,p3 are even which is impossible.

If p2=3 then p1=7;p3=11 and 4+p1p2=52;4+p1p3=92.

If p2>3 then p2=p1−4≡p1−1mod3.

p3=p1+4≡p1+1mod3.

If p1≡0mod3 then 3|p1 which is a contradiction.

If p1≡1mod3 then p2≡0mod3 which is a contradiction as p_2 is prime.

Likewise if p1≡−1mod3 then p3≡0mod3 which is also impossible.

So p2>3 is impossible and so the only solutions are {p2,p3}={3,11};p1=7.

- 4 months ago

Thanks :)

- 4 months ago

could you please provide detailed solution to this

- 4 months ago

3,7,11

- 5 months, 1 week ago