Waste less time on Facebook — follow Brilliant.
×

Primes are infinite

We shall prove this by contradiction. Let P1 = 2 ; P2 = 3 ; P3 = 5 ; . . . . . . . . . . . Pn = m, be the primes in ascending order .suppose there exists a last prime Pn , consider a positive integer “P” = (P1P2P3P4 . . . . . . Pn) + 1 .since P > 1 , some prime number divides “P” . let that number be “A” .since we assumed primes are infinite , “A” must be one among the set {p1 , p2 , p3 , . . . . . . . pn}.So , “A” should divide 1. Here, a contradiction arises. therefore there are infinite number of primes .

Note by Sudoku Subbu
3 years ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Hey Sudoku Subbu!The proof is nice but to make it a bit more pleasing to the eye you can use \(\LaTeX\).For example,instead of "Pn" you can get \(P_{n}\).The code is \ ( P_{n} \ ).Just remove the spaces.

Adarsh Kumar - 3 years ago

Log in to reply

i tried that but it remained same as i typed by the by thanks for your appreciation

Sudoku Subbu - 3 years ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...