Waste less time on Facebook — follow Brilliant.
×

Probability

Let \(A = \{1,2,3,\ldots,n \} \) and \(B = \{1,2,3,\ldots,n\} \). Random numbers \(i\) and \(j\) are chosen from the sets \(A\) and \(B\), respectively. Find the probability of \(i \geq j\). That is, what is \( P(i \geq j) \)?

Note by Aniket Sen
1 year, 4 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

We have \[n^2\] outcomes and \[n^2+n\over 2\] are good one. So \[P(i\geq j) = {n+1\over 2n}\]

Kristijan Kocbek - 5 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...