Given a square matrix $A$, prove that the sum of its eigenvalues is equal to the trace of $A$, and the product of its eigenvalues is equal to the determinant of $A$.

**Solution**

This proof requires the investigation of the characteristic polynomial of $A$, which is found by taking the determinant of $(A - \lambda{I}_{n})$.

$A = \begin{bmatrix} {a}_{11} & \cdots &{a}_{1n} \\ \vdots &\ddots &\vdots \\ {a}_{n1} &\cdots & {a}_{nn}\\ \end{bmatrix}$

$A - {I}_{n}\lambda = \begin{bmatrix} {a}_{11} - \lambda & \cdots &{a}_{1n} \\ \vdots &\ddots &\vdots \\ {a}_{n1} &\cdots & {a}_{nn} - \lambda\\ \end{bmatrix}$

Observe that $det(A - \lambda{I}_{n} ) = det(A) + ... + tr(A){(-\lambda)}^{n-1} + {(-\lambda)}^{n}$.

Let ${r}_{1}, {r}_{2}, ...,{r}_{n}$ be the roots of an *n-order polynomial*.

$P(\lambda) = ({r}_{1} - \lambda)({r}_{2} - \lambda)...({r}_{n} - \lambda)$ $P(\lambda) = \prod _{ i=i }^{ n }{ { r }_{ i } } +...+\sum _{ i=i }^{ n }{ { r }_{ i }{(-\lambda)}^{n-1} + {(-\lambda)}^{n} }$

Since the eigenvalues are the roots of a matrix polynomial, we can match $P(x)$ to $det(A - \lambda{I}_{n})$. Therefore it is clear that $\prod _{ i=i }^{ n }{ { \lambda }_{ i } = det(A)}$

and

$\sum _{ i=i }^{ n }{ { \lambda }_{ i } = tr(A)}.$

Check out my other notes at Proof, Disproof, and Derivation

No vote yet

1 vote

$</code> ... <code>$</code>...<code>."> Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in $</span> ... <span>$ or $</span> ... <span>$ to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestDid you mean $\displaystyle \sum_{i=i}^n \lambda_i = tr(A)$ ?

Log in to reply

Fixed it

Log in to reply