Waste less time on Facebook — follow Brilliant.
×

Product of 4 consecutive integers

Prove that the product of 4 consecutive integers is always equal to 1 less than a perfect square

Note by Vladimir Smith
2 years, 2 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Solution posted here

-

-

-

-

-

-

-

\(Let\quad x\quad be\quad equal\quad to\quad the\quad lowest\quad of\quad the\quad consecutive\quad integers.\quad Then:\\ x(x+1)(x+2)(x+3)\quad =\quad y^{ 2 }-1\\ Let\quad a\quad =\quad x(x+3)\\ Let\quad b\quad =\quad (x+1)(x+2)\\ Then\quad ab=y^{ 2 }-1\\ Lets\quad find\quad the\quad difference\quad between\quad a\quad and\quad b.\\ a+c=b\\ { x }^{ 2 }+3x+c\quad ={ \quad x }^{ 2 }+3x+2\\ \quad \quad \quad \quad \quad \quad c\quad =\quad 2\\ \therefore \\ \quad \quad a(a+2)\quad =\quad y^{ 2 }-1\\ { a }^{ 2 }+2a+1\quad =\quad { y }^{ 2 }\\ \quad \quad { (a+1) }^{ 2 }\quad =\quad { y }^{ 2 }\)

Vladimir Smith - 2 years, 2 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...