# Product of 4 consecutive integers

Prove that the product of 4 consecutive integers is always equal to 1 less than a perfect square

2 years, 9 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

## -

$$Let\quad x\quad be\quad equal\quad to\quad the\quad lowest\quad of\quad the\quad consecutive\quad integers.\quad Then:\\ x(x+1)(x+2)(x+3)\quad =\quad y^{ 2 }-1\\ Let\quad a\quad =\quad x(x+3)\\ Let\quad b\quad =\quad (x+1)(x+2)\\ Then\quad ab=y^{ 2 }-1\\ Lets\quad find\quad the\quad difference\quad between\quad a\quad and\quad b.\\ a+c=b\\ { x }^{ 2 }+3x+c\quad ={ \quad x }^{ 2 }+3x+2\\ \quad \quad \quad \quad \quad \quad c\quad =\quad 2\\ \therefore \\ \quad \quad a(a+2)\quad =\quad y^{ 2 }-1\\ { a }^{ 2 }+2a+1\quad =\quad { y }^{ 2 }\\ \quad \quad { (a+1) }^{ 2 }\quad =\quad { y }^{ 2 }$$

- 2 years, 9 months ago

×