Waste less time on Facebook — follow Brilliant.
×

Proof for \(\sum_{k=0}^{n-1} \cos \left( \frac {2k+1}{2n+1}\pi \right) = \frac 12\)

This note is to provide a proof for

\[\sum_{k=0}^{n-1} \cos \left( \frac {2k+1}{2n+1}\pi \right) = \frac 12\]

Proof:

\(\begin{align} S & = \sum_{k=0}^{n-1} \cos \left( \frac {2k+1}{2n+1}\pi \right) \\ & = \Re \left \{ \sum_{k=0}^{n-1} e^{\frac {2k+1}{2n+1}\pi i} \right \} \\ & = \Re \left \{e^{\frac {\pi i}{2n+1}} \sum_{k=0}^{n-1} e^{\frac {2k\pi i}{2n+1}} \right \} \\ & = \Re \left \{e^{\frac {\pi i}{2n+1}} \left(\frac {1-e^{\frac {2n\pi i}{2n+1}}}{1-e^{\frac {2\pi i}{2n+1}}}\right) \right \} \\ & = \Re \left \{ \frac {e^{\frac {\pi i}{2n+1}}-e^{\pi i}}{1-e^{\frac {2\pi i}{2n+1}}} \right \} \\ & = \Re \left \{ \frac {e^{\frac {\pi i}{2n+1}} + 1}{\left(1+e^{\frac {\pi i}{2n+1}} \right) \left(1-e^{\frac {\pi i}{2n+1}} \right)} \right \} \\ & = \Re \left \{ \frac 1{1-e^{\frac {\pi i}{2n+1}}} \right \} \\ & = \Re \left \{ \frac 1{1-\cos \frac {\pi}{2n+1} - i\sin \frac {\pi}{2n+1}} \right \} \\ & = \Re \left \{ \frac {1-\cos \frac {\pi}{2n+1} + i\sin \frac {\pi}{2n+1}}{\left(1-\cos \frac {\pi}{2n+1}\right)^2 + \sin^2 \frac {\pi}{2n+1}} \right \} \\ & = \Re \left \{ \frac {1-\cos \frac {\pi}{2n+1} + i\sin \frac {\pi}{2n+1}}{2-2\cos \frac {\pi}{2n+1}} \right \} \\ & = \frac 12 \ \square \end{align} \)

Since \(\cos (\pi - x) = - \cos x\), we have: \(\displaystyle \sum_{k=0}^{n-1} \cos \left(\pi - \frac {2k+1}{2n+1}\pi \right) = \sum_{k=0}^{n-1} \cos \left(\frac {2n-2k}{2n+1}\pi \right) = \sum_{k=0}^{n-1} \cos \left(\frac {2k}{2n+1}\pi \right) = - \frac 12\).

Note by Chew-Seong Cheong
3 months, 3 weeks ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Given what you've written up, can you provide a one-line proof to demonstrate that \[\sum_{k=0}^{n-1} \cos \left( \frac {2k}{2n+1}\pi \right) = -\frac 12? \]

Pi Han Goh - 3 months, 3 weeks ago

Log in to reply

Thanks, now I see it.

Chew-Seong Cheong - 3 months, 3 weeks ago

Log in to reply

good. A minor typo in the next-to-last three lines: delete the \(i\) from the sine and cosine args that resulted from a LATEX copy-and-paste error.

Wesley Zumino - 3 months, 3 weeks ago

Log in to reply

Thanks a lot.

Chew-Seong Cheong - 3 months, 3 weeks ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...