# Proof of euler reflection formula

Here's another proof of Euler reflection formula :

$Lemma1\quad :$

$P(n) : \displaystyle \prod _{ i=1 }^{ n }{ \dfrac { 1 }{ (x-{ a }_{ i }) } } =\sum _{ i=1 }^{ n }{ \dfrac { 1 }{ (x-{ a }_{ i }) } \prod _{ j=1,j\neq i }^{ n }{ \dfrac { 1 }{ ({ a }_{ i }-{ a }_{ j }) } } }$ for all $n$ belonging to $N$

Proof :

I will prove it by induction :

It can be easily verified that $P(1)$ is true :

Assume $P(n)$ is true :

than $\displaystyle \prod _{ i=1 }^{ n }{ \dfrac { 1 }{ (x-{ a }_{ i }) } } =\sum _{ i=1 }^{ n }{ \dfrac { 1 }{ (x-{ a }_{ i }) } \prod _{ j=1,j\neq i }^{ n }{ \dfrac { 1 }{ ({ a }_{ i }-{ a }_{ j }) } } }$

Multiplying both sides with $\dfrac{1}{(x-{a}_{n+1})}$ we have :

$\displaystyle \prod _{ i=1 }^{ n+1 }{ \dfrac { 1 }{ (x-{ a }_{ i }) } } =\sum _{ i=1 }^{ n }{ \dfrac { 1 }{ (x-{ a }_{ i }) } (\dfrac { 1 }{ (x-{ a }_{ n+1 }) } \prod _{ j=1,j\neq i }^{ n }{ \dfrac { 1 }{ ({ a }_{ i }-{ a }_{ j }) } ) } }$

It is easy to check that :

$\dfrac { 1 }{ (x-{ a }_{ i }) } \dfrac { 1 }{ (x-{ a }_{ n+1 }) } =\dfrac { 1 }{ ({ a }_{ i }-{ a }_{ n+1 }) } \dfrac { 1 }{ (x-{ a }_{ i }) } +\dfrac { 1 }{ ({ a }_{ n+1 }-{ a }_{ i }) } \dfrac { 1 }{ (x-{ a }_{ n+1 }) }$

Using this we have :

$\displaystyle \prod _{ i=1 }^{ n+1 }{ \dfrac { 1 }{ (x-{ a }_{ i }) } } =\sum _{ i=1 }^{ n }{ \dfrac { 1 }{ (x-{ a }_{ i }) } \prod _{ j=1,j\neq i }^{ n+1 }{ \dfrac { 1 }{ ({ a }_{ i }-{ a }_{ j }) } } } +\dfrac { 1 }{ (x-{ a }_{ n+1 }) } \sum _{ i=1 }^{ n }{ \dfrac { 1 }{ { (a }_{ n+1 }-{ a }_{ i }) } } \prod _{ j=1, j \neq i }^{ n }{ \dfrac { 1 }{ { a }_{ i }-{ a }_{ j } } }$

Now using P(n) we can say that :

$\displaystyle \sum _{ i=1 }^{ n }{ \dfrac { 1 }{ { (a }_{ n+1 }-{ a }_{ i }) } } \prod _{ j=1,j\neq i}^{ n }{ \dfrac { 1 }{ { a }_{ i }-{ a }_{ j } } } =\prod _{ i=1 }^{ n }{ \dfrac { 1 }{ ({ a }_{ n+1 }-{ a }_{ i }) } } =\prod _{ i=1,i\neq n+1\quad }^{ n+1 }{ \dfrac { 1 }{ ({ a }_{ n+1 }-{ a }_{ i }) } }$

Using this in our upper result we have :

$\displaystyle \prod _{ i=1 }^{ n+1 }{ \dfrac { 1 }{ (x-{ a }_{ i }) } } =\sum _{ i=1 }^{ n }{ \dfrac { 1 }{ (x-{ a }_{ i }) } \prod _{ j=1,j\neq i }^{ n+1 }{ \dfrac { 1 }{ ({ a }_{ i }-{ a }_{ j }) } } } +\dfrac { 1 }{ (x-{ a }_{ n+1 }) } \prod _{ j=1,j\neq n+1 }^{ n+1 }{ \dfrac { 1 }{ { a }_{ n+1 }-{ a }_{ j } } } =\sum _{ i=1 }^{ n+1 }{ \dfrac { 1 }{ (x-{ a }_{ i }) } \prod _{ j=1,j\neq i }^{ n+1 }{ \dfrac { 1 }{ ({ a }_{ i }-{ a }_{ j }) } } }$

Hence $P(n)$ is true implies $P(n+1)$ is true implies $P(n)$ is true for all $n$ belongs to $N$

$Lemma2 \quad :$

$\displaystyle \prod _{ j=1,j\neq i }^{ n }{ \dfrac { 1 }{ ({ a }_{ i }-{ a }_{ j }) } } =\dfrac { 1 }{ P'({ a }_{ i }) }$, where $P(x)$ is a monic polynomial having roots {${a}_{k}$}, for $1 \leq k \leq n$

Proof : $\displaystyle P(x) = \prod _{j=1}^{ n }{ (x-{ a }_{ j }) }$

Dividing both sides by $(x-{a}_{i})$ and taking limit $x \rightarrow {a}_{i}$ we have :

$\displaystyle \lim _{ x\rightarrow { a }_{ i } }{ \dfrac { P(x) }{ x-{ a }_{ i } } } =\prod _{ j=1,j\neq i }^{ n }{ ({ a }_{ i }-{ a }_{ j }) }$

Applying L-Hopitals rule we have our result :

$\displaystyle I(n) = \int _{ 0 }^{ \infty }{ \dfrac { dx }{ 1+{ x }^{ n } } }$

Let it's roots be {${a}_{k}$}, for $1 \leq k \leq n$

Then we have :

$\displaystyle I(n) = \int _{ 0 }^{ \infty }{ \prod _{ j=1 }^{ n }{ \dfrac { 1 }{ (x-{ a }_{ j }) } }dx }$

Applying lemma 1 we have :

$\displaystyle I(n) = \int _{ 0 }^{ \infty }{ \sum _{ i=1 }^{ n }{ \dfrac { 1 }{ (x-{ a }_{ i }) } \prod _{ j=1,j\neq i }^{ n }{ \dfrac { 1 }{ ({ a }_{ i }-{ a }_{ j }) } } } dx }$

Applying lemma 2 we have :

$\displaystyle I(n) = \int _{ 0 }^{ \infty }{ \sum _{ i=1 }^{ n }{ \dfrac { 1 }{ (x-{ a }_{ i }) } \dfrac { 1 }{ n{ a }_{ i }^{ n-1 } } } dx }$

Using the fact that ${a}_{i}^{n}=-1$ we have :

$\displaystyle -\dfrac { 1 }{ n } \int _{ 0 }^{ \infty }{ \sum _{ i=1 }^{ n }{ \dfrac { { a }_{ i } }{ (x-{ a }_{ i }) } } dx }$

Changing the order of integration and summation and integrating it we have :

$\displaystyle I(n) = \dfrac { 1 }{ n } \lim _{ p\rightarrow \infty }{ \sum _{ i=1 }^{ n }{ { a }_{ i }ln(x-{ a }_{ i }) } { | }_{ p }^{ 0 } }$

$\displaystyle I(n) = \dfrac { 1 }{ n } (\sum _{ i=1 }^{ n }{ { a }_{ i }ln(-{ a }_{ i }) } -\lim _{ p\rightarrow \infty }{ \sum _{ i=1 }^{ n }{ ln(p-{ a }_{ i }) } } )$

Now $\displaystyle \lim _{ p\rightarrow \infty }{ \sum _{ i=1 }^{ n }{ { a }_{ i }ln(p-{ a }_{ i }) } } =\lim _{ p\rightarrow \infty }{ ln(p)\sum _{ i=1 }^{ n }{ { a }_{ i } } -\sum _{ i=1 }^{ n }{ { a }_{ i }ln(1-\dfrac { { a }_{ i } }{ p } ) } } =0$

Here we have used the fact that sum of roots is 0 and applied the limit.

Now the value of our integral becomes :

$\displaystyle I(n) = \dfrac { 1 }{ n } (\sum _{ i=1 }^{ n }{ { a }_{ i }ln(-{ a }_{ i }) } )=\dfrac { 1 }{ n } (\sum _{ i=1 }^{ n }{ { a }_{ i }ln({ a }_{ i }) } +ln(-1)\sum _{ i=1 }^{ n }{ { a }_{ i } } )=\dfrac { 1 }{ n } (\sum _{ i=1 }^{ n }{ { a }_{ i }ln({ a }_{ i }) } )$

Using the general form of root $\large {a}_{k} = { e }^{ \left({ \frac { (2k-1)\pi i }{ 2 } }\right) }$

Our integral becomes :

$\displaystyle I(n) = \dfrac { 1 }{ n } \left(\sum _{ k=1 }^{ n }{ \frac { (2k-1)\pi i }{ n } { e }^{ \frac { (2k-1)\pi i }{ n } } } \right)= \large \dfrac { 2\pi i }{ { n }^{ 2 }{ e }^{ \frac { \pi i }{ n } } } \sum _{ k=1 }^{ n }{ k{ e }^{ \frac { 2\pi ik }{ n } } }$

Here I have again used the fact that sum of roots is 0.

Using the concept of Arithmetic-Geometric series it can be easily shown that :

$\displaystyle \sum _{ k=1 }^{ n }{ k{ x }^{ k } } =\dfrac { x({ x }^{ n }-1) }{ { (1-x) }^{ 2 } } -\dfrac { n{ x }^{ n+1 } }{ 1-x }$

Using this we have :

$I(n) = \large \dfrac { 2\pi i }{ n{ e }^{ \frac { \pi i }{ n } } } \left(\dfrac { { e }^{ \frac { 2\pi i }{ n } } }{ { e }^{ \frac { 2\pi i }{ n } }-1 } \right)$

Simplifying it we get :

$\displaystyle I(n) = \dfrac { \pi }{ n } \csc { \dfrac { \pi }{ n } }$

Again back to our integral :

$\displaystyle I(n) = \int _{ 0 }^{ \infty }{ \dfrac { dx }{ 1+{ x }^{ n } } }$

Use the substitution $y = \dfrac { dx }{ 1+{ x }^{ n } }$, we have :

$\displaystyle I(n) = \dfrac { 1 }{ n } \int _{ 0 }^{ 1 }{ { y }^{ \frac { -1 }{ n } }{ (1-y) }^{ \frac { 1 }{ n } -1 }dy }$

By defintion of beta function this evaluates to :

$\displaystyle I(n) = \dfrac { 1 }{ n } \dfrac { \Gamma \left(\dfrac { 1 }{ n } \right)\Gamma \left(1-\dfrac { 1 }{ n } \right) }{ \Gamma (1) }$

Comparing our two results we have :

$\dfrac { 1 }{ n } \Gamma \left(\dfrac { 1 }{ n } \right)\Gamma \left(1-\dfrac { 1 }{ n } \right)=\dfrac { \pi }{ n } \csc { \dfrac { \pi }{ n } }$

I have used $\Gamma(1)=1$

Finally we have :

$\Gamma \left(\dfrac { 1 }{ n } \right)\Gamma \left(1-\dfrac { 1 }{ n } \right)=\pi \csc { \dfrac { \pi }{ n } }$

Take $\dfrac{1}{n} = x$ to get :

$\Gamma (x)\Gamma (1-x)=\pi \csc { \pi x }$

$\LARGE HENCE \quad PROVED$

Sorry for the fact that the proof looks too messy, and that I have jumped many steps. It's largely based on manipulations on complex numbers.

Note by Ronak Agarwal
5 years, 7 months ago

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

• Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
• Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
• Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$ ... $$ or $ ... $ to ensure proper formatting.
2 \times 3 $2 \times 3$
2^{34} $2^{34}$
a_{i-1} $a_{i-1}$
\frac{2}{3} $\frac{2}{3}$
\sqrt{2} $\sqrt{2}$
\sum_{i=1}^3 $\sum_{i=1}^3$
\sin \theta $\sin \theta$
\boxed{123} $\boxed{123}$

Sort by:

Great! Can you put that inside here?

- 5 years, 7 months ago

Nice. And I really appreciate your patience while writing $LATEX$

- 5 years, 7 months ago

Thanks, how's the proof.

- 5 years, 7 months ago

It's really nice . And since I am talking to jee topper and I am aspirant for JEE 2016 , I would like to ask the same question, which books do you referred to in Inorganic , Is it all about just remembering things up or analysing the concept of reaction mechanism ?

- 5 years, 7 months ago

Isn't there a proof for lemma 1 which doesn't use induction?

- 5 years, 7 months ago

Note that in Lemma 1 after multiplying both sides by $\displaystyle \prod _{ i=1 }^{ n }{ (x-{ a }_{ i }) }$ and subtracting $1$ from both sides, the polynomial generated on R.H.S. is of $n-1$ degrees, but has $n$ roots. Thus it is an identity. See Lagrange's Interpolation Polynomial.

- 5 years, 7 months ago

Thanks!

- 5 years, 7 months ago

You can try that for yourself.

- 5 years, 7 months ago

It is obvious if you use covering lemma

- 5 years, 7 months ago

Did you mean $\Gamma(1)=1$?

Also, your prove only shows that the Euler reflection formula is valid for $x=\frac{1}{n}$, where n is an integer more than 0.

Great prove though.

- 5 years, 7 months ago

I know, I am trying to generalize this.

- 5 years, 7 months ago

Can you explain how you got to that step after you wrote 'using this we have' in the first lemma?

- 5 years, 6 months ago