this follows from Holder's inequality,and in my proof,for the sake of simplicity,i'll use it

Minkowski's inequality states that

\(\displaystyle\sum _{ n=1 }^{ k }{ ({ x }_{ n }+{ y }_{ n })^{ \frac { 1 }{ p } }\le (\displaystyle\sum _{ n=1 }^{ k }{ { x }_{ n }^{ p } } ) } ^{ \frac { 1 }{ p } }+(\displaystyle\sum _{ n=1 }^{ k }{ { y }_{ n }^{ p } } )^{ \frac { 1 }{ p } }\)

for \(p>1\)

and \({x}_{n},{y}_{n}\ge0\)

**Proof**:

we know

\(\displaystyle\sum _{ n=1 }^{ k }{ ({ x }_{ n }+{ y }_{ n })^{ p }=\displaystyle\sum _{ n=1 }^{ k }{ { x }_{ n }({ x }_{ n }+{ y }_{ n })^{ p-1 } } } +\displaystyle\sum _{ n=1 }^{ k }{ { y }_{ n }({ x }_{ n }+{ y }_{ n } } )^{ p-1 }\)

let's define \(a\) as \(a=\frac { p }{ p-1 } \) now by Holder's inequality we have

\(\displaystyle \sum_{n \mathop = 1}^k x_n \left({x_n + y_n}\right)^{p-1} + \sum_{n \mathop = 1}^k y_n \left({x_n + y_n}\right)^{p-1}\le((\sum _{ n=1 }^{ k }{ { x }_{ n }^{ p } } )^{ \frac { 1 }{ p } }+(\sum _{ n=1 }^{ k }{ { y }_{ n }^{ p } } )^{ \frac { 1 }{ p } })((\sum _{ n=1 }^{ k }{ ({ x }_{ k }+{ y }_{ k })^{ p })^{ \frac { 1 }{ a } } } )=\\((\displaystyle\sum _{ n=1 }^{ k }{ { x }_{ n }^{ p } } )^{ \frac { 1 }{ p } }+(\displaystyle\sum _{ n=1 }^{ k }{ { y }_{ n }^{ p } } )^{ \frac { 1 }{ p } })(\displaystyle\sum _{ n=1 }^{ k }{ ({ x }_{ n }+{ y }_{ n })^{ p } } )^{ \frac { 1 }{ a } }\)

dividing by \(\displaystyle\sum _{ n=1 }^{ k }{ ({ x }_{ n }+{ y }_{ n })^{ p } } )^{ \frac { 1 }{ a } }\)

we get

\(\displaystyle\sum _{ n=1 }^{ k }{ ({ x }_{ n }+{ y }_{ n })^{ \frac { 1 }{ p } }\le (\displaystyle\sum _{ n=1 }^{ k }{ { x }_{ n }^{ p } } ) } ^{ \frac { 1 }{ p } }+(\displaystyle\sum _{ n=1 }^{ k }{ { y }_{ n }^{ p } } )^{ \frac { 1 }{ p } }\)

Hence proved

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestCan someone clearly prove for what conditions do we have the equality?

Log in to reply

You should post your findings in the wiki page, hölder's inequality.

Log in to reply

Great proof!!!!

Log in to reply

thanks!

Log in to reply

very good job dude :O

Log in to reply

thanks :)

i tried 2 proofs,one was just too long,so i went with the simpler one :)

Log in to reply