Waste less time on Facebook — follow Brilliant.
×

Proof of Minkowski's inequality

this follows from Holder's inequality,and in my proof,for the sake of simplicity,i'll use it

Minkowski's inequality states that

\(\displaystyle\sum _{ n=1 }^{ k }{ ({ x }_{ n }+{ y }_{ n })^{ \frac { 1 }{ p } }\le (\displaystyle\sum _{ n=1 }^{ k }{ { x }_{ n }^{ p } } ) } ^{ \frac { 1 }{ p } }+(\displaystyle\sum _{ n=1 }^{ k }{ { y }_{ n }^{ p } } )^{ \frac { 1 }{ p } }\)

for \(p>1\)

and \({x}_{n},{y}_{n}\ge0\)


Proof:

we know

\(\displaystyle\sum _{ n=1 }^{ k }{ ({ x }_{ n }+{ y }_{ n })^{ p }=\displaystyle\sum _{ n=1 }^{ k }{ { x }_{ n }({ x }_{ n }+{ y }_{ n })^{ p-1 } } } +\displaystyle\sum _{ n=1 }^{ k }{ { y }_{ n }({ x }_{ n }+{ y }_{ n } } )^{ p-1 }\)

let's define \(a\) as \(a=\frac { p }{ p-1 } \) now by Holder's inequality we have

\(\displaystyle \sum_{n \mathop = 1}^k x_n \left({x_n + y_n}\right)^{p-1} + \sum_{n \mathop = 1}^k y_n \left({x_n + y_n}\right)^{p-1}\le((\sum _{ n=1 }^{ k }{ { x }_{ n }^{ p } } )^{ \frac { 1 }{ p } }+(\sum _{ n=1 }^{ k }{ { y }_{ n }^{ p } } )^{ \frac { 1 }{ p } })((\sum _{ n=1 }^{ k }{ ({ x }_{ k }+{ y }_{ k })^{ p })^{ \frac { 1 }{ a } } } )=\\((\displaystyle\sum _{ n=1 }^{ k }{ { x }_{ n }^{ p } } )^{ \frac { 1 }{ p } }+(\displaystyle\sum _{ n=1 }^{ k }{ { y }_{ n }^{ p } } )^{ \frac { 1 }{ p } })(\displaystyle\sum _{ n=1 }^{ k }{ ({ x }_{ n }+{ y }_{ n })^{ p } } )^{ \frac { 1 }{ a } }\)

dividing by \(\displaystyle\sum _{ n=1 }^{ k }{ ({ x }_{ n }+{ y }_{ n })^{ p } } )^{ \frac { 1 }{ a } }\)

we get

\(\displaystyle\sum _{ n=1 }^{ k }{ ({ x }_{ n }+{ y }_{ n })^{ \frac { 1 }{ p } }\le (\displaystyle\sum _{ n=1 }^{ k }{ { x }_{ n }^{ p } } ) } ^{ \frac { 1 }{ p } }+(\displaystyle\sum _{ n=1 }^{ k }{ { y }_{ n }^{ p } } )^{ \frac { 1 }{ p } }\)

Hence proved

Note by Hummus A
1 year, 9 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Can someone clearly prove for what conditions do we have the equality?

Kuba Bober - 1 year, 2 months ago

Log in to reply

You should post your findings in the wiki page, hölder's inequality.

Pi Han Goh - 1 year, 9 months ago

Log in to reply

Great proof!!!!

Shivam Mishra - 1 year, 9 months ago

Log in to reply

thanks!

Hummus A - 1 year, 9 months ago

Log in to reply

very good job dude :O

Natanael Flores - 1 year, 9 months ago

Log in to reply

thanks :)

i tried 2 proofs,one was just too long,so i went with the simpler one :)

Hummus A - 1 year, 9 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...