×

# Proof of Minkowski's inequality

this follows from Holder's inequality,and in my proof,for the sake of simplicity,i'll use it

Minkowski's inequality states that

$$\displaystyle\sum _{ n=1 }^{ k }{ ({ x }_{ n }+{ y }_{ n })^{ \frac { 1 }{ p } }\le (\displaystyle\sum _{ n=1 }^{ k }{ { x }_{ n }^{ p } } ) } ^{ \frac { 1 }{ p } }+(\displaystyle\sum _{ n=1 }^{ k }{ { y }_{ n }^{ p } } )^{ \frac { 1 }{ p } }$$

for $$p>1$$

and $${x}_{n},{y}_{n}\ge0$$

Proof:

we know

$$\displaystyle\sum _{ n=1 }^{ k }{ ({ x }_{ n }+{ y }_{ n })^{ p }=\displaystyle\sum _{ n=1 }^{ k }{ { x }_{ n }({ x }_{ n }+{ y }_{ n })^{ p-1 } } } +\displaystyle\sum _{ n=1 }^{ k }{ { y }_{ n }({ x }_{ n }+{ y }_{ n } } )^{ p-1 }$$

let's define $$a$$ as $$a=\frac { p }{ p-1 }$$ now by Holder's inequality we have

$$\displaystyle \sum_{n \mathop = 1}^k x_n \left({x_n + y_n}\right)^{p-1} + \sum_{n \mathop = 1}^k y_n \left({x_n + y_n}\right)^{p-1}\le((\sum _{ n=1 }^{ k }{ { x }_{ n }^{ p } } )^{ \frac { 1 }{ p } }+(\sum _{ n=1 }^{ k }{ { y }_{ n }^{ p } } )^{ \frac { 1 }{ p } })((\sum _{ n=1 }^{ k }{ ({ x }_{ k }+{ y }_{ k })^{ p })^{ \frac { 1 }{ a } } } )=\\((\displaystyle\sum _{ n=1 }^{ k }{ { x }_{ n }^{ p } } )^{ \frac { 1 }{ p } }+(\displaystyle\sum _{ n=1 }^{ k }{ { y }_{ n }^{ p } } )^{ \frac { 1 }{ p } })(\displaystyle\sum _{ n=1 }^{ k }{ ({ x }_{ n }+{ y }_{ n })^{ p } } )^{ \frac { 1 }{ a } }$$

dividing by $$\displaystyle\sum _{ n=1 }^{ k }{ ({ x }_{ n }+{ y }_{ n })^{ p } } )^{ \frac { 1 }{ a } }$$

we get

$$\displaystyle\sum _{ n=1 }^{ k }{ ({ x }_{ n }+{ y }_{ n })^{ \frac { 1 }{ p } }\le (\displaystyle\sum _{ n=1 }^{ k }{ { x }_{ n }^{ p } } ) } ^{ \frac { 1 }{ p } }+(\displaystyle\sum _{ n=1 }^{ k }{ { y }_{ n }^{ p } } )^{ \frac { 1 }{ p } }$$

Hence proved

Note by Hummus A
2 years ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

• bulleted
• list

1. numbered
2. list

1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

> This is a quote
This is a quote
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

Can someone clearly prove for what conditions do we have the equality?

- 1 year, 5 months ago

You should post your findings in the wiki page, hölder's inequality.

- 2 years ago

Great proof!!!!

- 2 years ago

thanks!

- 2 years ago

very good job dude :O

- 2 years ago

thanks :)

i tried 2 proofs,one was just too long,so i went with the simpler one :)

- 2 years ago