Proof Problem

Find all the integral solutions of \({ x }^{ 4 }+{ y }^{ 4 }+{ z }^{ 4 }-{ w }^{ 4 }=1995\).

Please help me with the problem, Thanks!

Note by Swapnil Das
2 years, 10 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

We know that \(a^4 \equiv 0,1 \pmod {16} \quad \forall \ a \in \mathbb Z \).

We can have:

\[x^4 + y^4 + z^4 - w^4 \equiv -1,0,1,2,3 \pmod {16}\]

or

\[x^4 + y^4 + z^4 - w^4 \equiv 0,1,2,3,15 \pmod {16}\]

But \(1995 \equiv 11 \pmod {16} \). So no integral solutions exist!

@Swapnil Das - I'd say it's a Number Theory Problem!

Satyajit Mohanty - 2 years, 10 months ago

Log in to reply

Solution master: @Satyajit Mohanty

Mehul Arora - 2 years, 10 months ago

Log in to reply

Yeah! It is! Great solution @Satyajit Mohanty :)

Mehul Arora - 2 years, 10 months ago

Log in to reply

why did you work with mod16? why not other numbers? is there any rule?

Dev Sharma - 2 years, 10 months ago

Log in to reply

I worked with mod 16 because fourth powers have an interesting property as they are equivalent to only 0 or 1 modulo 16. I don't have any idea about other modulos for 16th powers. Well, one can try further.

Satyajit Mohanty - 2 years, 10 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...