Prove gcf times the lcm of any two numbers equals the products of those two numbers

Given two numbers, l and m, prove that:

gcf(l, m)lcm(l, m) = lm

Note by Varun Iyer
4 years, 9 months ago

No vote yet
4 votes

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Assuming that the prime factorisations of \(l\) and \(m\) are as follow,

\[l=2^{a_1}\times3^{a_2}\times...\times P^{a_n}\]

\[m=2^{b_1}\times3^{b_2}\times...\times P^{b_n}\]

where \(\left \{ a_n \right \}\in \mathbb{N}\cup \left \{ 0 \right \}\), \(\left \{ b_n \right \}\in \mathbb{N}\cup \left \{ 0 \right \}\) and \(P\) is a prime.

WLOG, assuming that \(a_1\leq b_1, a_2\leq b_2,...,a_n\leq b_n\),

The \(\operatorname{lcm}(l,m)\) can be obtained by choosing the highest power of each prime factor from either of the numbers. \[\operatorname{lcm} (l,m)=2^{b_1}\times 3^{b_2}\times...P^{b_n}\]

On the other hand, the \(\gcd (l,m)\) is obtained by choosing the smallest power of each prime factor from either of the numbers.

\[\gcd (l,m)=2^{a_1}\times3^{a_2}\times...\times P^{a_n}\]

Notice that

\[\gcd (l,m)\times \operatorname {lcm}(l,m)= 2^{a_1+b_1}\times 3^{a_2+b_2}\times ... \times P^{a_n+b_n}\]

which is equivalent to

\[l \times m=2^{a_1+b_1}\times 3^{a_2+b_2}\times...\times P^{a_n+b_n}\]

\[\therefore\gcd(l,m)\times \operatorname {lcm}(l,m)=l\times m\]

I may have made some mistakes in my proof. Please do correct me if you spotted any.

Ho Wei Haw - 4 years, 9 months ago

Log in to reply

You can refer to the GCD/LCM writeup in the Olympiad section.

This is a basic interesting fact which relates these two.

Is there a similar equation for the three variable case? Why, or why not?

Calvin Lin Staff - 4 years, 9 months ago

Log in to reply

See http://www.proofwiki.org/wiki/ProductofGCDandLCM for a much neater, albeit trickier, proof of the above.

Siddharth Prasad - 4 years, 9 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...