×

# prove it!!!!!!

Prove that a triangle co-ordinates of whose vertices are given by integers can never be a equilatral triangle....

Note by Aman Sharma
3 years, 4 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

Hey here we have to use the contradiction. At first take that we have a triangle with integral coordinates then find its area by the determinant method ,where you would get an rational solution. Then find the area by the formula of area of equilateral triangle(i.e.,area=√3÷4×a²). Here you would get an irrational solution. Thats it here you get two different areas for the same triangle.proved by contradiction.

- 3 years, 4 months ago

Waaw awsome solution.........i solved this problem by assuming a triangle with vertices A(a,0) B(-a,0) C(0,b) where a,b are integers......then since triangle is eqilatral so |AB|=|AC| and then by destence formula i got a contradiction

- 3 years, 4 months ago

In an equilateral triangle if two vertices have integers as coordinates then the third vertex won't hve integers as coordinates , they would be irrational nos.

- 3 years, 4 months ago