New user? Sign up

Existing user? Log in

Note by Ahmad Nugroho 2 years ago

Easy Math Editor

*italics*

_italics_

**bold**

__bold__

- bulleted- list

1. numbered2. list

paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)

> This is a quote

This is a quote

# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"

2 \times 3

2^{34}

a_{i-1}

\frac{2}{3}

\sqrt{2}

\sum_{i=1}^3

\sin \theta

\boxed{123}

Sort by:

What have you done? What have you tried? Where are you stuck?

Log in to reply

From point 4 to point 1 i stucked no idea

How do you show that a set is an orthonormal basis? What are the necessary and sufficient conditions?

@Calvin Lin – If we have an orthornormal set like the picture , the condition for orthonormal basis are <ui,uj> = 0 , u~=j <ui,uj> = 1 , u=j

<,> is an inner product Sorry i replied by phone

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestWhat have you done? What have you tried? Where are you stuck?

Log in to reply

From point 4 to point 1 i stucked no idea

Log in to reply

How do you show that a set is an orthonormal basis? What are the necessary and sufficient conditions?

Log in to reply

<

,> is an inner product Sorry i replied by phoneLog in to reply