Let us assume √2 is a rational number
Then it can expressed in the form of p/q where p and q are integers and q is not equal to 0
√2=p/q
Cancelling common factors
√2=a/b where a and b are co primes
Squaring on both sides
2=a square/ b square
2/b square= a square. .... (1)
2 divides a square
Therefore 2 divides a
a=2c for some integer c
Putting a = 2c in (1)
We get 2b square = 4c square
2 divides b square
2 divides b
Therefore a and b have at least 2 as their common factors
Therefore a and b are not co prime
So, this contradiction has arisen due to our wrong assumption
√2 is irrational

Firstly we have to know the definition of rational number. If we can write a number in the form p/ q, where p& q are integer and q>0. Then we can assure that is an rational number . Otherwise it is an iretional number.

Let us assume √2 is a rational number Then it can expressed in the form of p/q where p and q are integers and q is not equal to 0 √2=p/q Cancelling common factors √2=a/b where a and b are co primes Squaring on both sides 2=a square/ b square 2/b square= a square. .... (1) 2 divides a square Therefore 2 divides a a=2c for some integer c Putting a = 2c in (1) We get 2b square = 4c square 2 divides b square 2 divides b Therefore a and b have at least 2 as their common factors Therefore a and b are not co prime So, this contradiction has arisen due to our wrong assumption √2 is irrational

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestLet us assume √2 is a rational number Then it can expressed in the form of p/q where p and q are integers and q is not equal to 0 √2=p/q Cancelling common factors √2=a/b where a and b are co primes Squaring on both sides 2=a square/ b square 2/b square= a square. .... (1) 2 divides a square Therefore 2 divides a a=2c for some integer c Putting a = 2c in (1) We get 2b square = 4c square 2 divides b square 2 divides b Therefore a and b have at least 2 as their common factors Therefore a and b are not co prime So, this contradiction has arisen due to our wrong assumption √2 is irrational

Log in to reply

Simply by long method of finding square root...we will find that the result is neither terminating nor repeating.

Log in to reply

Really how so?

Log in to reply

Firstly we have to know the definition of rational number. If we can write a number in the form p/ q, where p& q are integer and q>0. Then we can assure that is an rational number . Otherwise it is an iretional number.

Log in to reply

Let us assume √2 is a rational number Then it can expressed in the form of p/q where p and q are integers and q is not equal to 0 √2=p/q Cancelling common factors √2=a/b where a and b are co primes Squaring on both sides 2=a square/ b square 2/b square= a square. .... (1) 2 divides a square Therefore 2 divides a a=2c for some integer c Putting a = 2c in (1) We get 2b square = 4c square 2 divides b square 2 divides b Therefore a and b have at least 2 as their common factors Therefore a and b are not co prime So, this contradiction has arisen due to our wrong assumption √2 is irrational

Log in to reply

copied!!! at your own risk

Log in to reply

what will be the value of 1

Log in to reply

What is 1 amit majumdar

Log in to reply