Proof of Von Mangoldt Dirichlet series

I am going to show a proof of n1Λ(n)ns=ζ(s)ζ(s)\sum_{n\geq 1}\dfrac{\Lambda(n)}{n^s}=-\dfrac{\zeta'(s)}{\zeta(s)} We start off by writing this as p=primek=1ln(p)psk=p=primeln(p)ps1\sum_{p=prime}\sum_{k=1}^\infty \dfrac{\ln(p)}{p^{sk}}=\sum_{p=prime} \dfrac{\ln(p)}{p^s-1} Let this be; we will use this later.

Lemma: n1F(n)ns=ζ(s)p=primeF(p)ps1\sum_{n≥1} \dfrac{F(n)}{n^s}=\zeta(s)\sum_{p=prime}\dfrac{F(p)}{p^s-1} where F(n) is a completely additive function.

Proof: we can split the sum over primes. F(pk)=kF(p)F(p^k)=kF(p). we use this and get p=primek=0F(pk)psk(p∤n1ns)=p=primek=0kF(p)psk(ζ(s)ζ(s)ps)=p=primeF(p)ζ(s)(1ps)k=0kpsk=ζ(s)p=primeF(p)ps1\large\sum_{p=prime}\sum_{k=0}^\infty \dfrac{F(p^k)}{p^{sk}}\left(\sum_{p\not\mid n} \dfrac{1}{n^s}\right)=\sum_{p=prime}\sum_{k=0}^\infty \dfrac{kF(p)}{p^{sk}}\left(\zeta(s)-\zeta(s)p^{-s}\right)\\=\sum_{p=prime}F(p)\zeta(s)(1-p^{-s})\sum_{k=0}^\infty\dfrac{k}{p^{sk}}= \zeta(s)\sum_{p=prime}\dfrac{F(p)}{p^s-1}

Now ln(n)\ln(n) is a completely additive function, so n=1ln(n)ns=ζ(s)p=primeln(p)ps1\sum_{n=1}^\infty \dfrac{\ln(n)}{n^s}=\zeta(s)\sum_{p=prime}\dfrac{\ln(p)}{p^s-1} We know that ζ(s)=n=1ln(n)ns-\zeta'(s)=\sum_{n=1}^\infty \dfrac{\ln(n)}{n^s} and putting in the RHS's summation in terms of Von Mangoldt: n=1Λ(n)ns=ζ(s)ζ(s)\sum_{n=1}^\infty \dfrac{\Lambda(n)}{n^s}=-\dfrac{\zeta'(s)}{\zeta(s)}

Note by Aareyan Manzoor
3 years, 5 months ago

No vote yet
1 vote

</code>...<code></code> ... <code>.">   Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link]( link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in </span>...<span></span> ... <span> or </span>...<span></span> ... <span> to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}


Sort by:

Top Newest

I have changed a typo: From "completely multiplicative function" to "completely additive function" (regarding ln(n))

Other than that, great proof!

Extra: Alternative proof of lemma:

n=pjnpjwjn=\prod _{p_j|n}^{ }p_j^{w_j}

F(n)=jwjF(pj)=pknF(p)=1f(n)P(n)F(n)=\sum _j^{ }w_jF\left(p_j\right)=\sum _{p^k|n}^{ }F\left(p\right)=1*f(n)P(n)

Where f(n) satisfies f(p^k)=F(p) and P(n) is 1 if n=p^k and is 0 otherwise.

Julian Poon - 3 years, 5 months ago

Log in to reply


Problem Loading...

Note Loading...

Set Loading...