# Prove $$S(n)$$ is divisible by 13

Prove that the sum $$\large S(n) = 1^{4n+2} + 2^{4n+2} + 3^{4n+2} + 4^{4n+2} + 5^{4n+2} + 6^{4n+2}$$ is divisible by 13 for all positive integer $$n$$.

Note by Aymen Hafeez
2 years, 5 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

Consider modulo 13 $\begin{array}a 1^{4n+2}&\equiv &1(1^4)^n &\equiv&1(1)^n&\pmod{13}\\ 2^{4n+2}&\equiv &4(2^4)^n &\equiv &4(3)^n&\pmod{13}\\ 3^{3n+2}&\equiv &9(3^4)^n &\equiv &-4(3)^n&\pmod{13}\\ 4^{4n+2}&\equiv &16(4^4)^n&\equiv&3(9)^n &\pmod{13}\\ 5^{4n+2}&\equiv &25(5^4)^n&\equiv &-1(1)^n&\pmod{13}\\ 6^{4n+2}&\equiv &36(6^4)^n&\equiv &-3(9)^n&\pmod{13} \end{array}$ add them up to get zero

- 2 years, 5 months ago

$$we\quad may\quad rewrite\quad S(n)\quad as\\ { 1 }^{ 2(2n+1) }\quad +\quad { 2 }^{ 2(2n+1) }\quad +\quad { 3 }^{ 2(2n+1) }\quad ....\quad upto\quad { 6 }^{ 2(2n+1) }\\ =\quad { 1 }^{ 2n+1 }\quad +\quad { 4 }^{ 2n+1 }\quad +\quad { 9 }^{ 2n+1 }\quad .....\quad upto\quad { 36 }^{ 2n+1 }\\ \\ now\quad using\quad the\quad property\quad that\quad a^ n\quad +\quad b^ n\quad is\quad always\quad divisible\quad by\quad a\quad +\quad b\quad when\quad n\quad is\quad odd\quad \\ and\quad also\quad the\quad fact\quad that\quad 2n+1\quad is\quad always\quad odd.\\ { 1 }^{ 2n+1 }\quad +\quad { 25 }^{ 2n+1 }\quad is\quad divisible\quad by\quad 26\quad and\quad hence\quad 13\quad -\quad (i)\\ { 4 }^{ 2n+1 }\quad +\quad { 9 }^{ 2n+1 }\quad is\quad divisible\quad by\quad 13-\quad (ii)\\ { 36 }^{ 2n+1 }\quad +\quad { 16 }^{ 2n+1 }\quad is\quad divisible\quad by\quad 52\quad and\quad hence\quad 13\quad -\quad (iii)\\ \quad adding\quad the\quad equations\quad up\quad we\quad get\quad \\ { 1 }^{ 2n+1 }\quad +\quad { 4 }^{ 2n+1 }....\quad upto\quad { 36 }^{ 2n+1 }\quad or\quad in\quad other\quad words\quad S(n)\quad will\quad always\quad be\quad divisible\quad by\quad 13\quad for\quad positive\quad integer\quad n\\ \\ hence\quad proved.\\$$

- 2 years, 5 months ago

A pretty easy and awesome solution!

- 2 years, 4 months ago

Thanks!

- 2 years, 4 months ago