Waste less time on Facebook — follow Brilliant.
×

Prove that

n^4+4 prime number <==> n=1

Note by Mouataz Chadmi
4 years, 3 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

\( n^4 + 4 = (n^2-2n+2)(n+2n+2)\) So the expression \( n^4+4\) can be factored for every \(n > 1\) and hence it can never be a prime for \(n>1\)

Vikram Waradpande - 4 years, 3 months ago

Log in to reply

That's not complete, you should mention that \(n^2-2n+2=1 \implies (n-1)^2=0 \implies n = 1\), and if \(n>1\), then both factors are bigger than \(1\), hence \(n^4+4\) is not prime.

Tim Vermeulen - 4 years, 3 months ago

Log in to reply

Oh yeah, forgot that! That's why you're on level 5 and i'm on 4!

Vikram Waradpande - 4 years, 3 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...