Waste less time on Facebook — follow Brilliant.
×

Prove the following expression

The equation \( a \cos 2\theta + b \sin2\theta = c\) has 2 roots (of \(\theta\)): \(\alpha\) and \(\beta\). Prove that \( \tan(\alpha + \beta) = \dfrac ba\).

Note by Pritthijit Nath
1 year, 6 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

I think the answer should be a/b instead of b/a. !

Proceed as follows:-

Let the eq.n be :→ a(cos2p) + b(sin2p) = c (just for convenience in writing)

Now we substitute,

x = tan(p)

So that,

Sin2p = 2x/(1+x^2) &

Cos2p = (1-x^2)/(1+x^2)

Now our eq.n reduces to→

a [2x/(1+x^2)] + b [(1-x^2)/(1+x^2)] =c

On further simplification u get a quadratic eq. in x as follows→

(b+c)•x^2 - 2ax + c-b = 0

Now let the two roots be tanA & tanB,

Then by vieta's formulae,

TanA + TanB = 2a/(b+c) &

TanA●TanB = (c-b)/(c+b)

Now use the formula of Tan (A+B)→

Tan (A+B) = (TanA + TanB)/(1-TanA●TanB)

To get→

| Tan(A+B) = a/b |★ ( Ans.)

Please feel free to correct and suggest me wherever im wrong ...

Thank you.!

Rishabh Tiwari - 1 year, 6 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...