# Prove this

$\large\dfrac1{2^m} \sum_{k=1}^{2^m} \dfrac{f(k)} k > \dfrac23.$

Let $$f(n)$$ be the greatest odd divisor of $$n$$. Prove that for all positive integers $$m$$, the inequality above holds true.

Note by Yash Saxena
2 years, 7 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

Induct on $$m$$; this is obvious for $$m = 1$$. Assume this is true for $$m = M$$, and we will prove this for $$m = M+1$$.

Note that $$f(k) = f(2k)$$ and $$f(2k-1) = 2k-1$$. Thus,

\begin{align*} \frac{1}{2^{M+1}} \sum_{k=1}^{2^{M+1}} \frac{f(k)}{k} &= \frac{1}{2^{M+1}} \sum_{k=1}^{2^M} \left( \frac{f(2k-1)}{2k-1} + \frac{f(2k)}{2k} \right) \\ &= \frac{1}{2^{M+1}} \sum_{k=1}^{2^M} \left( \frac{2k-1}{2k-1} + \frac{f(k)}{2k} \right) \\ &= \frac{1}{2^{M+1}} \sum_{k=1}^{2^M} \left( 1 + \frac{1}{2} \cdot \frac{f(k)}{k} \right) \\ &= \frac{1}{2^{M+1}} \sum_{k=1}^{2^M} 1 + \frac{1}{2^{M+1}} \sum_{k=1}^{2^M} \frac{1}{2} \cdot \frac{f(k)}{k} \\ &= \frac{1}{2^{M+1}} \cdot 2^M + \frac{1}{2^{M+2}} \sum_{k=1}^{2^M} \frac{f(k)}{k} \\ &> \frac{1}{2} + \frac{1}{4} \cdot \frac{2}{3} \\ &= \frac{2}{3} \end{align*}

In the first equality, we unroll the summation so we're summing two terms at a time. The second equality uses the aforementioned facts $$f(k) = f(2k)$$ and $$f(2k-1) = 2k-1$$. The rest should be fairly straightforward; the inequality invokes the inductive hypothesis.

This completes the proof for $$m = M+1$$, and thus finishes the proof by induction.

- 2 years, 7 months ago

Was writing up a proof, but your method is surely more elegant. Well done!

- 2 years, 7 months ago