# Prove this

Let $$\phi$$ denote the golden ratio, $$\phi = \dfrac{1+\sqrt5}2$$, prove that $\phi -\frac { 13 }{ 8 } =\displaystyle\sum _{ n=0 }^{ \infty }{ \frac { (-1)^{ n+1 }(2n+1)! }{ (n+2)!n!{ 4 }^{ 2n+3 } } } .$

Note by Hummus A
2 years, 5 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

Lemma :

If $$\displaystyle f(a) = \sum_{r=0}^{\infty} (-1)^{r} \dfrac{\Gamma\left(r+\frac{3}{2}\right)}{4^r(r+a)\Gamma(r+1)}$$

Then $$\displaystyle f(1) - f(2) = \dfrac{\sqrt{\pi}}{2} \left(72 - \dfrac{160}{\sqrt{5}}\right)$$

Proof :

Using Infinite Binomial Series,

$$\displaystyle (1+x)^{-n} = \sum_{r=0}^{\infty} (-1)^{r} \dfrac{\Gamma(n+r)}{\Gamma(n)\Gamma(r+1)} x^r$$

Putting $$\displaystyle n = \dfrac{3}{2}$$ and noting that $$\displaystyle \dfrac{1}{z+1} = \int_{0}^{1} x^z \mathrm{d}x$$, we have,

$$\displaystyle f(1) - f(2) = \Gamma\left(\dfrac{3}{2}\right) \int_{0}^{1} (1-x) \left(1+\dfrac{x}{4}\right)^{-\frac{3}{2}} \mathrm{d}x$$

$$\displaystyle = \dfrac{\sqrt{\pi}}{2}\left[\dfrac{-16(x+8)}{\sqrt{x+4}}\right]_{0}^{1} \qquad \left( \because \Gamma \left(\frac{3}{2}\right) = \dfrac{\sqrt{\pi}}{2} \right)$$

$$\displaystyle = \dfrac{\sqrt{\pi}}{2} \left(72 - \dfrac{160}{\sqrt{5}}\right)$$

This proves the Lemma.

Now, the series can be written as,

$$\displaystyle \text{S} = \sum_{r=0}^{\infty} (-1)^{r+1} \dfrac{ \Gamma(2r+2)}{4^{2r+3} \Gamma(r+3)\Gamma(r+1)}$$

Using Gamma Duplication Formula, we have,

$$\displaystyle \text{S} = -\dfrac{1}{2^5 \sqrt{\pi}} \sum_{r=0}^{\infty} (-1)^{r} \dfrac{\Gamma(r+\frac{3}{2})}{4^r \Gamma(r+3)}$$

$$\displaystyle = -\dfrac{1}{2^5 \sqrt{\pi}} \sum_{r=0}^{\infty} (-1)^{r} \dfrac{ \Gamma(r+\frac{3}{2})}{4^r (r+1)(r+2) \Gamma(r+1)}$$

$$\displaystyle = -\dfrac{1}{2^5 \sqrt{\pi}} \left[\sum_{r=0}^{\infty} (-1)^{r} \dfrac{ \Gamma(r+\frac{3}{2})}{4^r (r+1) \Gamma(r+1)} -\sum_{r=0}^{\infty} (-1)^{r} \dfrac{\Gamma(r+\frac{3}{2})}{4^r (r+2) \Gamma(r+1)} \right]$$

Using the Lemma,

$$\displaystyle \text{S} = -\dfrac{1}{2^5 \sqrt{\pi}} \left(f(1) - f(2)\right) = -\dfrac{1}{2^5 \sqrt{\pi}} \left(\dfrac{\sqrt{\pi}}{2} \left(72 - \dfrac{160}{\sqrt{5}}\right)\right)$$

Simplifying, we have,

$$\displaystyle \boxed{\text{S} = \phi -\dfrac{13}{8}}$$

- 2 years, 5 months ago

@Hummus a Try this. Little similar to your question.

- 2 years, 5 months ago

you're the best at these problems :)

- 2 years, 5 months ago