×

# Prove This beautiful result !

$$\alpha \quad ,\quad \beta \quad >\quad 0\quad \quad \& \quad \quad \theta \quad \in \quad R\\ \\ f\left( \theta \right) \quad =\quad \quad \alpha \sec ^{ 2 }{ \theta } \quad +\quad \beta \csc ^{ 2 }{ \theta } \quad +\quad \sqrt { { \alpha }^{ 2 }\sec ^{ 4 }{ \theta } \quad +\quad { \beta }^{ 2 }\csc ^{ 4 }{ \theta } }$$.

Then Prove That Minimum Value of $$f\left( \theta \right)$$ is :

$${ f\left( \theta \right) }_{ min }\quad =\quad 2(\alpha \quad +\quad \beta \quad +\quad \sqrt { 2\alpha \beta } )$$.

Extra credit: Just observe it !
( It's Look ugly But Believe me in actual it is very very Beautiful question )

Following tool of mathematics are may Helpful Here Like : Substitution , Geometrical interpretation , AM - GM , Circles , Straight lines , Polar substitution etc, !!

Note by Deepanshu Gupta
2 years, 3 months ago

Sort by:

good Question,,!! rememberedme to high school..!! :D · 2 years, 3 months ago

Okay Now its time to give Hint :

use Substitution : $$a\quad =\quad \alpha \sec ^{ 2 }{ \theta } \\ \\ b\quad =\quad \beta \csc ^{ 2 }{ \theta }$$. · 2 years, 3 months ago

Ohh ! Now I got something

is it mean :

$$f(\theta )\quad =\quad a\quad +\quad b\quad +\quad \sqrt { { a }^{ 2 }\quad +\quad { b }^{ 2 } }$$.

I think it is Perimeter of right angle triangle ?

Am i going Correct ? · 2 years, 3 months ago

Yes ! You are on right Path ! Keep Trying You will find the way :) · 2 years, 3 months ago

See Unravelling an inequality problem by Calvin Lin. · 2 years, 3 months ago

That's certainly one way to motivate the solution.

Recognizing and relating patterns is helpful in approaching such problems. Staff · 2 years, 3 months ago

@Calvin Lin Sir I solved in this way :(Similar to your Awesome Technique )

imgur

Let $$P\quad =\quad a\quad +\quad b\quad +\quad \sqrt { { a }^{ 2 }\quad +\quad { b }^{ 2 } }$$.

also Let $$\sqrt { { a }^{ 2 }\quad +\quad { b }^{ 2 } } \quad =\quad { C }_{ 1 }\quad +\quad { C }_{ 2 }$$.

$$P\quad =\quad (\quad a\quad +\quad { C }_{ 2 }\quad )\quad +\quad (\quad b\quad +\quad { C }_{ 1 }\quad )\quad$$.

Now For Minimum perimeter P we use AM-GM inequality

$$P\quad \ge \quad 2\sqrt { (\quad a\quad +\quad { C }_{ 2 }\quad )(\quad b\quad +\quad { C }_{ 1 }\quad ) } \\ \\ { P }_{ min }\quad =\quad 2\sqrt { (\quad a\quad +\quad { C }_{ 2 }\quad )(\quad b\quad +\quad { C }_{ 1 }\quad ) } \quad \\$$

If and only iff :

1)- GM must be constant

2)- Equality of variable must be attained

$$\\ \bullet \quad (\quad a\quad +\quad { C }_{ 2 }\quad )(\quad b\quad +\quad { C }_{ 1 }\quad )\quad =\quad constant\\ \\ \bullet \quad (\quad a\quad +\quad { C }_{ 2 }\quad )\quad =\quad (\quad b\quad +\quad { C }_{ 1 }\quad )\quad =\quad r\quad (say)\\ \\ { P }_{ min }\quad =\quad 2r\quad$$.

Now Same as Yours !

Is This is correct ? Calvin Sir ? · 2 years, 3 months ago

what about area at this stage?@Deepanshu Gupta · 2 years, 3 months ago

I don't think that we can do more for calculating area from above information in this particular question . what do you think ? @sandeep Rathod · 2 years, 3 months ago

ohh is it a famous problem? I don't know about this . Actually this question was giving to me by a friend of me as a challange !

So I Liked it after solving it So i share this ! ,

But i solved it in slightly different manner as that calvin sir posted ( also my friend also help me little in how to starting this problem ) · 2 years, 3 months ago

So what is your Slightly different approach Can you post it ! please Thanks ! @Deepanshu Gupta · 2 years, 3 months ago

I had Posted it @KARAN SHEKHAWAT

But I'am not 100% sure that it is correct or not ! · 2 years, 3 months ago

Comment deleted Dec 08, 2014

@Sandeep Bhardwaj @Sanjeet Raria · 2 years, 3 months ago

I am too trying it with $$\sqrt{\frac{x_1^2+\cdots+x_n^2}{n}}\ge\frac{x_1+\cdots+x_n}{n}$$ for the third term. · 2 years, 3 months ago