# Proving a zeta function identity.

Prove the following:

$\frac{\zeta(2) }{2}+\frac{\zeta (4)}{2^3}+\frac{\zeta (6)}{2^5}+\frac{\zeta (8)}{2^7}+\cdots=1$

Note: There's a very elegant proof to this which doesn't use integral calculus and uses only changing of summation order and telescoping sum. Can you find it?

This note was inspired by a friend who wanted me to post more problems for the community.

Note by Prasun Biswas
3 years, 2 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

@Prasun Biswas consider $\zeta(s)=\sum_{n=1}^\infty \dfrac{1}{n^s}$ the required summation is $2\sum_{s=1}^\infty \sum_{n=1}^\infty \dfrac{1}{(2n)^{2s}}=2\sum_{n=1}^\infty \dfrac{1}{(2n)^2-1}\\ =\sum_{n=1}^\infty\left( \dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right) = 1$

- 2 years, 5 months ago

Yup, this is indeed the intended solution. +1 :)

You should, however, elaborate your solution to mention all the non-trivial steps taken in your solution. For example, don't just start with the double sum. It would be much better to show how the double sum form is obtained.

$S=\sum_{s=1}^\infty\frac{\zeta(2s)}{2^{2s-1}}=2\sum_{s=1}^\infty\frac{\zeta(2s)}{2^{2s}}=2\sum_{s=1}^\infty\frac{\displaystyle\sum_{n=1}^\infty\dfrac{1}{n^{2s}}}{2^{2s}}=2\sum_{s=1}^\infty\sum_{n=1}^\infty\frac{1}{(2n)^{2s}}$

Also, a brief mention of the interchange of summation order and why is it allowed here would be nice.

- 2 years, 5 months ago

@Nihar Mahajan, you happy now? :3

- 3 years, 2 months ago

The answer is kind off obvious after you mentioned manipulating sums, but wouldn't you first have to show that (a) the sum is finite and has a limit of 1 and (b) that rearrangement is allowed. IIRC, you can't just rearrange terms.

- 3 years, 2 months ago

a) I think you can use ratio test to verify that the sum absolutely converges.

b) Rearrangement is allowed here by a special case of Tonelli's theorem which you'd be able to identify later since the "stuff" you'd be summing will be non-negative for all values through which $$i,j$$ cycles where $$i,j$$ are the indexes of the double sum you need to form.

- 3 years, 2 months ago