Waste less time on Facebook — follow Brilliant.
×

Proving that lines are parallel

Hi, I need help solving this problem - any help would be appreciated :)

\(P\) and \(Q\) are points on the bisector of the exterior angle \(A\) of triangle \(ABC\) with A between \(P\) and \(Q\), and \(PB\) is parallel to \(QC\). Point \(D\) is on BC such that \(DP=DQ\). Prove that \(AB\) is parallel to \(DQ\).

Note by Julian Yu
1 year, 8 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

I have drawn a sketch for the problem , but according to your statements DQ is part of PQ,which passes through point A. so far, as DQ & AB , both of them passes through point A , that means , they intersect at point A . therefore they can not be parllel. because they intersect.

Aziz Alasha - 6 months, 3 weeks ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...