Consider an Triangle ABC and "P" Point inside this Triangle such that : \(PA=3\) and \(PB=4\) and \(PC=5\) . Then Find Maximum Possible Value of : \(\displaystyle{{ ({ AB }^{ 2 }+{ BC }^{ 2 }+{ CA }^{ 2 }) }_{ max }}\)

I got This Interesting situation from my friend ,But I couldn't able to solve it . Can You ? Take it as Challenge

Thanks!

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestOkay , I done it in This way : Let Consider our Triangle frame in Argand Plane By assuming \(P(0)\quad ,\quad A({ Z }_{ 1 })\quad ,\quad B({ Z }_{ 2 })\quad \& \quad C({ Z }_{ 3 })\) So our Task is to find \({ E }_{ max }\)

Note : Here I will repeatedly Use : The Standard Properties : \(\bullet { \left| { Z } \right| }^{ 2 }={ (Z) }(\overset { \_ }{ { Z } } )\\ \bullet Z+\overset { \_ }{ { Z } } =2Re(Z)\)

\(\displaystyle{E={ \left| { Z }_{ 1 }-{ Z }_{ 2 } \right| }^{ 2 }+{ \left| { Z }_{ 2 }-{ Z }_{ 3 } \right| }^{ 2 }+{ \left| { Z }_{ 3 }-{ Z }_{ 1 } \right| }^{ 2 }\\ E=({ Z }_{ 1 }-{ Z }_{ 2 })(\overset { \_ }{ { Z }_{ 1 } } -\overset { \_ }{ { Z }_{ 2 } } )+({ Z }_{ 2 }-{ Z }_{ 3 })(\overset { \_ }{ { Z }_{ 2 } } -\overset { \_ }{ { Z }_{ 3 } } )+({ Z }_{ 3 }-{ Z }_{ 1 })(\overset { \_ }{ { Z }_{ 3 } } -\overset { \_ }{ { Z }_{ 1 } } )\\ E=2({ \left| { Z }_{ 1 } \right| }^{ 2 }+{ \left| { Z }_{ 2 } \right| }^{ 2 }+{ \left| { Z }_{ 3 } \right| }^{ 2 })-2Re({ Z }_{ 1 }\overset { \_ }{ { Z }_{ 2 } } +{ Z }_{ 2 }\overset { \_ }{ { Z }_{ 3 } } +{ Z }_{ 3 }\overset { \_ }{ { Z }_{ 1 } } )\quad \quad .\quad .\quad .\quad (1)}\)

Now Consider \(\displaystyle{{ \left| { Z }_{ 1 }{ +Z }_{ 2 }+{ Z }_{ 3 } \right| }^{ 2 }\quad \ge 0\\ ({ Z }_{ 1 }{ +Z }_{ 2 }+{ Z }_{ 3 })(\overset { \_ }{ { Z }_{ 1 } } +\overset { \_ }{ { Z }_{ 2 } } +\overset { \_ }{ { Z }_{ 3 } } )\ge 0\\ { \left| { Z }_{ 1 } \right| }^{ 2 }+{ \left| { Z }_{ 2 } \right| }^{ 2 }+{ \left| { Z }_{ 3 } \right| }^{ 2 }+2Re({ Z }_{ 1 }\overset { \_ }{ { Z }_{ 2 } } +{ Z }_{ 2 }\overset { \_ }{ { Z }_{ 3 } } +{ Z }_{ 3 }\overset { \_ }{ { Z }_{ 1 } } )\ge 0\\ { (2Re({ Z }_{ 1 }\overset { \_ }{ { Z }_{ 2 } } +{ Z }_{ 2 }\overset { \_ }{ { Z }_{ 3 } } +{ Z }_{ 3 }\overset { \_ }{ { Z }_{ 1 } } )) }_{ min }=-({ \left| { Z }_{ 1 } \right| }^{ 2 }+{ \left| { Z }_{ 2 } \right| }^{ 2 }+{ \left| { Z }_{ 3 } \right| }^{ 2 })\quad .\quad .\quad .\quad (2)\\ \\ { E }_{ max }=3({ \left| { Z }_{ 1 } \right| }^{ 2 }+{ \left| { Z }_{ 2 } \right| }^{ 2 }+{ \left| { Z }_{ 3 } \right| }^{ 2 })\\ { E }_{ max }=3({ 3 }^{ 2 }+{ 4 }^{ 2 }+{ 5 }^{ 2 })\\ \boxed { { E }_{ max }=150 } }\)

But I Didn't able to find AB , BC , AC as individual at this condition !

Log in to reply

nice

Log in to reply

This is awesome !

Log in to reply

How did you wrote in a white box?

Log in to reply

Log in to reply

Interesting situation ! I'am getting 150 is it correct ? I used Complex numbers @KARAN SHEKHAWAT

Log in to reply

I get the same result, with \(AB = 5, BC = \sqrt{73}\) and \(AC = \sqrt{52}\).

Log in to reply

How did You get Individual Values of all sides ? Can You Please show this ? Because I'am able To find Maximum Value , But I'am unable To find What are Individual Values of Sides . Thanks!

Log in to reply

\(AB^{2} + BC^{2} + CA^{2} = 100 - 24\cos(\alpha) - 40\cos(\beta) - 30\cos(\gamma) = f(\alpha, \beta, \gamma)\).

I then applied Lagrange multipliers under the condition \(g(\alpha, \beta, \gamma) = \alpha + \beta + \gamma = 2\pi\). Noting the negative signs in the expression for \(f(\alpha, \beta, \gamma)\) I further applied the condition that each of the three angles were \(\ge \frac{\pi}{2}\), (more of a working condition than a formal one).

This method gave me that \(f\) was maximized when \(\cos(\alpha) = 0, \cos(\beta) = -0.8\) and \(\cos(\gamma) = -0.6\), for which \(f_{\max} = 150\). Plugging these values back into the individual Cosine Law equations gave me the side values noted above.

Log in to reply

Log in to reply

Log in to reply

Yes My Freind Also Say's that answer is 150 . But Still How did you Solve it by complex number ? :O

Log in to reply

146 when the triangle collapses into a straight line in the limit . That is BC=5+4=9. CA=5 + 3 +8, AB=4-3 =1. So the sum of squares = 81+64+1=146. With say, vertical line CP=5, draw to locii of B and A as circles center P and radii 4 and 3. P should be in the triangle. Collapsed with P would be CPAB.

Log in to reply

I think this would give a maximum value of \(9^{2} + 8^{2} + 1^{2} = 81 + 64 + 1 = 146\), just shy of the maximum of \(150\) found previously.

Log in to reply

Can you show your method? I have corrected my calculation.

Log in to reply

Log in to reply

Log in to reply