# Python tools for Brilliant

We can use these functions for some problems in Brilliant. To use these functions, copy it to a python file (I named it brilliant.py) and use execfile("path/to/brilliant.py") to include the file and use these functions. Enjoy using it :)

PS: have bugs? Report in the comment section

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 def c_recur(result, list, start, end, left): #recursive function, do not use it if start>=end or left<=0: result.append(tuple(list)); return; for i in range(start, end): list.append(i); c_recur(result, list, i+1, end+1, left-1); list.pop(); def p_recur(result, list, marks, start, n, left): #recursive function, do not use it if left<=0: result.append(tuple(list)); return; for i in range(0, n): if not marks[i]: marks[i]=True; list.append(start+i); p_recur(result, list, marks, start, n, left-1); list.pop(); marks[i]=False; def c(k, n): #generate all k-combinations from range(0, n) if k<=0 or n<=0 or k>n: return []; result=[]; c_recur(result, [], 0, n-k+1, k); return result; def p(k, n): #generate all k-permutations from range(0, n) if k<=0 or n<=0 or k>n: return []; result=[]; p_recur(result, [], [False]*n, 0, n, k); return result; def select(k, list): #generate all k-combinations from list result=[] n=len(list) for indices in c(k, n): l=[] for i in indices: l.append(list[i]) result.append(tuple(l)) return result def permute(list): #generate all k-permutations from list result=[] n=len(list) for indices in p(n, n): l=[] for i in indices: l.append(list[i]) result.append(tuple(l)) return result def diff(l1, l2): #return l1\l2 l=[] for i in l1: if i not in l2: l.append(i) return l def factor(n): #factorize n r=n; i=2; h={}; i=2; while r>1: while r%i==0: r//=i; if i not in h: h[i]=0; h[i]+=1; i+=1; return h; def ffactor(n): #factorize n! h={} for i in xrange(2, n+1): f=factor(i) for k in f: if k not in h: h[k]=0 h[k]+=f[k] return h def gcd(m, n): if m==0: return n while m!=0: n%=m m,n=n,m return n 

Note by Nam Diện Lĩnh
6 years ago

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

• Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
• Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
• Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$ ... $$ or $ ... $ to ensure proper formatting.
2 \times 3 $2 \times 3$
2^{34} $2^{34}$
a_{i-1} $a_{i-1}$
\frac{2}{3} $\frac{2}{3}$
\sqrt{2} $\sqrt{2}$
\sum_{i=1}^3 $\sum_{i=1}^3$
\sin \theta $\sin \theta$
\boxed{123} $\boxed{123}$