Waste less time on Facebook — follow Brilliant.
×

Quadrilateral Missing Length

In quadrilateral \( ABCD \), it is given that \( AD = 8 \), \( DC = 12 \), \( CB = 10 \), and \( \angle A = \angle B = 60^\circ \). Find the length of \( AB \). Generalize.

Note by Ahaan Rungta
3 years ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

image link: http://s29.postimg.org/n3gl6sjl3/Untitled.png

image link: http://s29.postimg.org/n3gl6sjl3/Untitled.png

Let \(AD\) and \(BC\) intersect at \(E.\) Notice that \(\triangle EAB\) is equilateral. If \(AB=x,\) we have \(CE = x-10\) and \(DE= x-8\). By Cosine rule on \(\triangle ECD\), \[12^2 = (x-8)^2 + (x-10)^2 - 2 \cdot \dfrac{1}{2} \cdot (x-8)(x-10) .\] Solving yields \(x= 9+\sqrt{141}\).

The generalization attempt should work out similarly-- denote \(AD \cap BC = X,\) use sine rule to find the ratios \(\dfrac{CX}{XB}\) and \(\dfrac{DX}{AX},\) and then use cosine rule on \(\triangle XAB.\) I'm too lazy to carry out the details at the moment.

Log in to reply

Correct; nice solution!

Ahaan Rungta - 3 years ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...