Q. A circle \(C\) of radius \(1\) is inscribed in an equilaterateral traingle \(PQR\). The points of contact of \(C\) with sides \(PQ\),\(QR\),\(RP\) are \(D\), \(E\) and \(F\) respectively. The line \(PQ\) is given by the equation \(y+\sqrt{3}x-6=0\) and the point \(D\) is \((\frac{3\sqrt{3}}{2},\frac{3}{2}\)). Further it is given that the origin and the centre \(C\) are on the same side of line \(PQ\).

Find the coordinates of \(E\), \(F\),\(P\),\(Q\) and \(R\).

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestP: \((\sqrt{3},3)\), Q: \((2\sqrt{3},0)\), R: \((0,0)\)

D: \((\tfrac{3\sqrt{3}}{2},\tfrac32)\), E: \((\sqrt{3},0)\), F: \((\tfrac{\sqrt{3}}{2},\tfrac32)\)

The coordinates of \(P\) and \(Q\) (and of \(E\) and \(F\)) can be swapped.

Log in to reply