If

$\sin(x+y) = 2\sin\big(\tfrac{1}{2}(x-y)\big)$

$\sin(y+z) = 2\sin\big(\tfrac{1}{2}(y-z)\big)$

Prove That

$\big(\tfrac{1}{2}\sin x\cos z\big)^{1/4}+\big(\tfrac{1}{2}\cos x\sin z\big)^{1/4} =\big(\sin 2y)^{1/12}$

Note : $$x$$, $$y$$ and $$z$$ are acute angles.

This is a part of the set Formidable Series and Integrals

Note by Ishan Singh
1 year, 8 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$