Waste less time on Facebook — follow Brilliant.
×

Real analysis

Let \(\dot{\mathcal P } \) be a tagged partition of \( [0,3] \).

(a) Show that the union \(U_1\) of all subintervals in \(\dot{\mathcal P} \) with tags in \([0,1]\) satisfies \( [ 0, 1- ||\dot{\mathcal P} || \subseteq U1 \subseteq [ 0, 1 + || \dot{\mathcal P} || ] \).

(b) Show that the union \(U_2\) of all subintervals in \(\dot{\mathcal P} \) with tags in \([1,2]\) satisfies \( [ 1 + ||\dot{\mathcal P} || , 2- ||\dot{\mathcal P} || \subseteq U2 \subseteq [ 1 - ||\dot{\mathcal P} ||, 2 + || \dot{\mathcal P} || ] \).

Note by Syed Subhan Siraj
1 year, 9 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

There are no comments in this discussion.

×

Problem Loading...

Note Loading...

Set Loading...