Let \( \dot{\mathcal P } := \{ (I_i, t_i) \}_{i=1}^n \) be a tagged partition of \([a,b] \) and let \(c_1 < c_2 \).

(a) If \(u\) belongs to a subinterval \(I_i\) whose tag satisfies \(c_1 \leq t_i \leq c_2\), show that \( c_1 - || \dot{\mathcal P} || \leq u \leq c_1 + || \dot{\mathcal P} || \).

(b) If \(v\in [a,b] \) and satisfies \(c_1 + || \dot{\mathcal P} || \leq v \leq c_2 - || \dot{\mathcal P} || \), then the tag \(t_i\) of any subinterval \(I_i\) that contains \(v\) satisfies \(t_i \in [c_1, c_2 ] \).

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

There are no comments in this discussion.