# Real solution of $x^3 +1=x$

I was just wondering about its different solutions while one which I did was Cardan's solution

$x^3$-$x$+1=0

Let $x$=$y + z$ and $yz$=$\frac {1}{3}$ $\Rightarrow$ $3yz - 1$=0

$x^3$=$(y+z)^3$ =$y^3 + z^3 + 3yz (y+z)$=$y^3 + z^3 +3yzx$

Putting in the equation value of $x^3$

$y^3 + z^3 + (3yz-1)x +1$

$y^3 + z^3 +1$ $\Rightarrow$ $y^3+z^3$=-1 and also $yz$=$\frac {1}{3}$ $\Rightarrow$ $y^3z^3$=$\frac {1}{27}$

Making quadratic in $y^3$ and $z^3$ solving we can get y and z and thus y+z=x by making it as factor we can get other solution which are complex.

Can you provide such simillar solution and what if question was $x^4$+1=$x$ Note by Tarun Garg
6 years, 10 months ago

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

• Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
• Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
• Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$ ... $$ or $ ... $ to ensure proper formatting.
2 \times 3 $2 \times 3$
2^{34} $2^{34}$
a_{i-1} $a_{i-1}$
\frac{2}{3} $\frac{2}{3}$
\sqrt{2} $\sqrt{2}$
\sum_{i=1}^3 $\sum_{i=1}^3$
\sin \theta $\sin \theta$
\boxed{123} $\boxed{123}$

Sort by:

The simplest way to solve this quartic, without wheeling in a load of theory, is to try to complete the square. We can write $x^4 - x + 1 \; = \; (x^2 + a)^2 - b(x + c)^2$ provided that $b=2a$, $2bc = 1$ and $a^2 - bc^2 = 1$. Then $b = 2a$, $c = \tfrac{1}{4a}$, and $a$ satisfies the equation $a^2 - \tfrac{1}{8a} \; = \; 1$ Thus we need to solve a cubic equation to find $a$. Once we have done this, we can use $a$, $b$ and $c$ to factorise $x^4 - x + 1$ as a product of two quadratics, and then solving the equation $x^4 - x + 1 = 0$ is straightforward.

It is possible to solve all quartics with no $x^3$ term this way; completing the square aims to write the quartic as a difference of two squares, and the condition that needs to be solved to make this possible requires us to solve a cubic equation. If we can solve cubics, we can solve quartics. The restriction that the quartic should have no $x^3$ term is no problem; any cubic can be converted into one without an $x^3$ term simply by translation, regarding it as a function of $x+u$ for a suitable $u$.

- 6 years, 10 months ago

A more theoretically elegant way to solve the quartic is the following. If $t_1,t_2,t_3,t_4$ are the roots of the quartic $x^4 + ax^3 + bc^2 + cx + d = 0$ then consider $s_1 = t_1t_2+ t_3t_4 \qquad s_2 = t_1t_3+t_2t_4 \qquad s_3 = t_1t_4+t_2t_3$ We can use the usual polynomial root techniques to identify $s_1+s_2+s_3 (= b)$, $s_1s_2+s_1s_3+s_2s_3$ and $s_1s_2s_3$ in terms of $a,b,c,d$, and hence find a cubic equation whose roots are $s_1,s_2,s_3$. Once we know the values of $s_1,s_2,s_3$, finding the values of $t_1,t_2,t_3,t_4$ is not difficult.

- 6 years, 10 months ago

That's a really good method getting lots of things to think here.

- 6 years, 10 months ago

Real solution

$x={\left( \frac{\sqrt{23}}{2\,{3}^{\frac{3}{2}}}-\frac{1}{2}\right) }^{\frac{1}{3}}+\frac{1}{3\,{\left( \frac{\sqrt{23}}{2\,{3}^{\frac{3}{2}}}-\frac{1}{2}\right) }^{\frac{1}{3}}}$

- 6 years, 10 months ago

any process for solution of x^5+1=x

- 6 years, 10 months ago

No. The quintic polynomial equation $x^5 - x +1 = 0$ cannot be solved by these techniques (adding, subtracting, multiplying, dividing, taking $n$th roots). Collectively, these techniques are called "using radicals". While we can solve quadratics, cubics and quartics by radicals, we cannot (in general) solve quintics by radicals. This result is one of the great triumphs of Galois Theory, and relies on the fact that the permutation group $S_5$ of five symbols is a much more complicated group (in a particular sense) than the permutation group $S_4$ of four symbols.

- 6 years, 10 months ago