Waste less time on Facebook — follow Brilliant.
×

Really, is very large!!!

Here comes the problem,

Let \(a,b,c\) be real non-negative numbers, prove that:

\(a+b+c\le \frac { { a }^{ 2 }+{ b }^{ 2 } }{ 2c } +\frac { { b }^{ 2 }+{ c }^{ 2 } }{ 2a } +\frac { { c }^{ 2 }+{ a }^{ 2 } }{ 2b } \le \frac { { a }^{ 3 } }{ bc } +\frac { { b }^{ 3 } }{ ca } +\frac { { c }^{ 3 } }{ ab } \)

Note by Isaac Jiménez
2 years, 5 months ago

No vote yet
1 vote

Comments

Sort by:

Top Newest

Whenever u see cyclic homogeneous inequality. Think of EMV theorem. It helps to prove this ineq in 3lines.... Dinesh Chavan · 2 years, 4 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...