Here comes the problem,

Let \(a,b,c\) be real non-negative numbers, prove that:

\(a+b+c\le \frac { { a }^{ 2 }+{ b }^{ 2 } }{ 2c } +\frac { { b }^{ 2 }+{ c }^{ 2 } }{ 2a } +\frac { { c }^{ 2 }+{ a }^{ 2 } }{ 2b } \le \frac { { a }^{ 3 } }{ bc } +\frac { { b }^{ 3 } }{ ca } +\frac { { c }^{ 3 } }{ ab } \)

## Comments

Sort by:

TopNewestWhenever u see cyclic homogeneous inequality. Think of EMV theorem. It helps to prove this ineq in 3lines.... – Dinesh Chavan · 2 years, 7 months ago

Log in to reply