Really, is very large!!!

Here comes the problem,

Let \(a,b,c\) be real non-negative numbers, prove that:

\(a+b+c\le \frac { { a }^{ 2 }+{ b }^{ 2 } }{ 2c } +\frac { { b }^{ 2 }+{ c }^{ 2 } }{ 2a } +\frac { { c }^{ 2 }+{ a }^{ 2 } }{ 2b } \le \frac { { a }^{ 3 } }{ bc } +\frac { { b }^{ 3 } }{ ca } +\frac { { c }^{ 3 } }{ ab } \)

Note by Isaac Jiménez
3 years, 8 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Whenever u see cyclic homogeneous inequality. Think of EMV theorem. It helps to prove this ineq in 3lines....

Dinesh Chavan - 3 years, 7 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...