Waste less time on Facebook — follow Brilliant.
×

Recurrences with modulo

Is there any specific way to solve recurrence of form (example):

\[f(x) = (a \cdot f(x-1) + c) \bmod{r}\] (when recurrence involves modulo).

For recurrence without modular arithmetic I could use generating function method (multiply by \(x^n\), sum, manipulate terms and so on) and often solve it in simple way. Could I somehow exploit information about recurrence solution without modulo to solve recurrence with modulo?

Note by Santiago Hincapie
1 year, 2 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Well, we can solve it as \( f(x) = a f(x-1) + c \), and then apply the \( \pmod{r} \) at the end right?

Check out linear recurrence relations to show that \( f(x) = A a^{n-1} + \frac{ c(a^n-1)} { a-1} \).

Calvin Lin Staff - 1 year, 2 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...