What is the value of \(\huge i^{i^{i^{i^{\cdot^{\cdot^\cdot}}}}} \)?

**Clarification**: \(i=\sqrt{-1}\).

What is the value of \(\huge i^{i^{i^{i^{\cdot^{\cdot^\cdot}}}}} \)?

**Clarification**: \(i=\sqrt{-1}\).

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

## Comments

Sort by:

TopNewestHint: The expression be equal to \(a+ib\) for some . Then, \(a+ib=i^{(a+ib)}\implies a=e^(-\pi b/2)\cos(a\pi /2), b=e^(−\pi b/2)\sin(a\pi /2)\implies a^2+b^2=e^{-\pi b},\ b=a\tan (a\pi /2)\). One needs to solve the resulting set of transcendental equations. – Samrat Mukhopadhyay · 8 months agoLog in to reply