×

# Repetitive Squares?

Can someone propose a solution to the following question using only 'basic' secondary school mathematics?

A repetitive number is a natural number that consists of two equal strings of digits 'glued' together. For example, 99 and 998998 are repetitive numbers, but 99099 is not. Are there any repetitive perfect squares? If so, how many?

Note by H K
10 months, 2 weeks ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

- 10 months, 2 weeks ago

Indeed. This is a problem that once you write down (in a mathematical equation) what you need, it essentially resolves itself.

To get you started:
Let $$10 ^k \leq a < 10^{k+1}$$.
We want to know if $$( (10 ^{k+1} + 1 ) \times a$$ could ever be a square.

Staff - 10 months, 2 weeks ago