# RMO 2014 Delhi Region Q.6

Let $x_1,x_2,\ldots ,x_{2014}$ be positive real numbers such that $\large\displaystyle\sum^{2014}_{j=1} x_j=1$ Determine with proof the smallest constant $K$ such that $\large K \displaystyle\sum^{2014}_{j=1} \dfrac{x^2_j}{1-x_j}\geq1$

• You can find rest of the problems here

• You can find the solutions here Note by Aneesh Kundu
5 years, 12 months ago

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

• Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
• Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
• Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$ ... $$ or $ ... $ to ensure proper formatting.
2 \times 3 $2 \times 3$
2^{34} $2^{34}$
a_{i-1} $a_{i-1}$
\frac{2}{3} $\frac{2}{3}$
\sqrt{2} $\sqrt{2}$
\sum_{i=1}^3 $\sum_{i=1}^3$
\sin \theta $\sin \theta$
\boxed{123} $\boxed{123}$

Sort by:

Method 1

$x_{1} + x_{2} + \ldots + x_{2014} = 1$

$\dfrac{x_{1}^{2}}{1 - x_{1}^{2}} + \dfrac{x_{2}^{2}}{1 - x_{2}^{2}} + ........................... + \dfrac{x_{201}4^{2}}{1 - x_{2014}^{2}}$

Applying Titu's Lemma ,

$\dfrac{x_{1}^{2}}{1 - x_{1}^{2}} + \dfrac{x_{2}^{2}}{1 - x_{2}^{2}} + ........................... + \dfrac{x_{201}4^{2}}{1 - x_{2014}^{2}} \geq \dfrac{(x_{1} + x_{2} + .... + x_{2014})^{2}}{2014 - (x_{1} + x_{2} + .....+ x_{2014})}$

$\dfrac{x_{1}^{2}}{1 - x_{1}^{2}} + \dfrac{x_{2}^{2}}{1 - x_{2}^{2}} + ........................... + \dfrac{x_{201}4^{2}}{1 - x_{2014}^{2}} \geq \frac{1}{2013}$

Thus , $\boxed{K = 2013}$

Method 2

$\displaystyle \sum_{1}^{2014} \dfrac{x^{2}_{j} - 1}{1 - x_{j}} + \dfrac{1}{1 - x_{j}}$

$\displaystyle \sum_{1}^{2014} -( 1 + x_{j}) + \dfrac{1}{1 - x_{j}}$

$\boxed{- 2015 + \displaystyle \sum_{1}^{2014} \dfrac{1}{1 - x_{j}} = \displaystyle \sum_{1}^{2014} \dfrac{x^{2}_{j}}{1 - x_{j}}}$

Applying $A.M \geq H.M$

$\frac\sum_{1}^{2014} \dfrac{1}{1 - x_{j}}}{2014} \geq \dfrac{2014}{ 2014 - ( x_{1} + x_{2} ..... x_{2014})$

$\displaystyle \sum_{1}^{2014} \dfrac{1}{1 - x_{j}} \geq \dfrac{2014^{2}}{ 2013}$

$- 2015 + \displaystyle \sum_{1}^{2014} \dfrac{1}{1 - x_{j}} \geq \dfrac{2014^{2}}{ 2013} - 2015$

$- 2015 + \displaystyle \sum_{1}^{2014} \dfrac{1}{1 - x_{j}} \geq \dfrac{2014^{2}- 2015 \times 2013}{2013}$

$- 2015 + \displaystyle \sum_{1}^{2014} \dfrac{1}{1 - x_{j}} \geq \dfrac{2014^{2} - (2014 + 1)(2014 - 1)}{2013}$

$- 2015 + \displaystyle \sum_{1}^{2014} \dfrac{1}{1 - x_{j}} \geq \dfrac{2014^{2} - (2014^{2} - 1)}{2013}$

$- 2015 + \displaystyle \sum_{1}^{2014} \dfrac{1}{1 - x_{j}} \geq \dfrac{1}{2013}$

$\displaystyle \sum_{1}^{2014} \dfrac{x^{2}_{j}}{1 - x_{j}} \geq \dfrac{1}{2013}$

$2013\displaystyle \sum_{1}^{2014} \dfrac{x^{2}_{j}}{1 - x_{j}} \geq 1$

$\boxed{K = 2013}$

Enjoy!!!

\Huge\color{#ff00b3}{♛}\;\;\;\color{#ff0000}{ ❤ }\;\;\;\color{#0000ff}{\mathbf{B}}\color{#ff7f00}{\mathbf{r}}\color{#ffff00}{\mathbf{i}}\color{#00ff00}{\mathbf{l}}\color{#00ffff}{\mathbf{l}}\color{#0000ff}{\mathbf{i}}\color{#8b00ff}{\mathbf{a}}\color{#ff0000}{\mathbf{n}}\color{#ff7f00}{\mathbf{t}}\color{color:#ffff00}{\mathbf{.}}\color{#00ff00}{\mathbf{o}}\color{#0081ff}{\mathbf{r}}\color{#ff69b4}{\mathbf{g}} copied from anastisya romoniva comment

- 5 years, 12 months ago

Your second solution using AM>HM is what I wrote during the RMO, almost verbatim... Wow.

- 5 years, 11 months ago

Yes i too enjoyed very much doing by the 2nd method

- 5 years, 11 months ago

Yeah!!

- 5 years, 12 months ago

Its tagged under A.M G.M inequality , have you done using it , if yes then how

- 5 years, 12 months ago

Actually I meant AM-HM

Typo

- 5 years, 12 months ago

u can use \dfrac(it gives bigger fractions) and also \ldots(it gives the dots)

- 5 years, 12 months ago

I applied the \Idots , its not working

- 5 years, 12 months ago

Its actually small "L" $\ldots$

I know its confusing sometimes

- 5 years, 12 months ago

Most latex is small letters, unless you want to stress something or make it

More lines: \rightarrow, \RIghtarrow give us $\rightarrow , \Rightarrow$
Capital Greek alphabet: \gamma, \Gamma give us $\gamma, \Gamma$

Staff - 5 years, 12 months ago

Contrary to @Sandeep Rathod solution there is one more method :

Let an function $y\quad =\quad \cfrac { \quad { x }^{ 2 } }{ 1-x } \\$. in (0,1) So it inscribe an convex polygon of centroid G so from jensons inequality :

$y\quad =\quad f(x)\quad =\quad \cfrac { \quad { x }^{ 2 } }{ 1-x } \\ \\ { y }_{ G }\quad \ge \quad { y }_{ p }\\ \\ \frac { \sum { f\left( { x }_{ i } \right) } }{ n } \quad \ge \quad f\left( \cfrac { \sum { { x }_{ i } } }{ n } \right) \\ \\ \sum { f\left( { x }_{ i } \right) } \quad \ge \quad nf\left( \cfrac { 1 }{ n } \right) \quad \quad \quad (put\quad n\quad =\quad 2014)\\ \\ 2013\sum { f\left( { x }_{ i } \right) } \quad \ge \quad 1\\ \\ \boxed { K\quad =\quad 2013 }$.

Q.E.D

- 5 years, 12 months ago

i did'nt understood , how it's inscribed? @Deepanshu Gupta

I appreciate - you always think different

- 5 years, 12 months ago

Thanks ! But Your Solution is also very elegant ! I also appreciate it !

And Actually if we consider 'n' points (2014 points) on curve and join them, then they will form an closed loop (or we can say convex polygon ) So Centroid of this Polygon , which is surely lies inside the polygon So it's y-coordinate is greater or equal (when all pt's are collinear , I think) to y-coordinates of point on curve which has same x-coordinate as that of centroid of this loop (Polygon) !

Here I used Jenson's inequality

- 5 years, 12 months ago

I got 2013 by Cauchy-Scwartz

- 5 years, 12 months ago

Ditto. Do you think solving 4 is enough!Dunno, this waz my only RMO.

- 5 years, 12 months ago

I learnt the spelling of "Cauchy Schwartz" today,and I got the solution at my first glance! ;-)

- 5 years, 12 months ago

- 5 years, 12 months ago

I think there's no 't'.

- 5 years, 12 months ago

Yeah! You are right. I got the spelling wrong! * sob * @Joel Tan

- 5 years, 12 months ago

Sir,Multiply the LHS by summation or (1-x) ,then apply Cauchy!

- 5 years, 12 months ago

i got $2013$

- 5 years, 12 months ago

Anish can you please post the first 5 questions also... This one I did by cauchy Schwartz

- 5 years, 12 months ago

Its given below the question

- 5 years, 12 months ago

Can someone explain the third question please

- 5 years, 11 months ago

I did it by contradiction but not very sure..

- 5 years, 11 months ago

Is that the one about permuting the digits of two powers of 2?

- 5 years, 11 months ago

Chebyshev

- 5 years, 12 months ago

Tchebycheff

- 5 years, 12 months ago

-- http://en.wikipedia.org/wiki/Chebyshev%27sinequality

- 5 years, 12 months ago

I had given my RMO yesterday and done this using Jensen's inequality.

- 5 years, 12 months ago

I used Titu's Lemma for this one!

- 5 years, 12 months ago