Let ∆ABC be scalene, with BC as the largest side. Let

D

be the foot of the altitude from

A onto side BC. Let points

K and

L be chosen on the lines AB and AC respectively,

such that

D is the midpoint of segment KL. Prove that the

points B, K, C, L are concyclic if and only if

∠BAC = 90

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestWhat have you tried? What do you know?

Log in to reply

Log in to reply

Triangle LDC ~~ triangle BDK by SAS similarity criteria .

Log in to reply

I forgot to mention something

Log in to reply

Log in to reply

easyto prove that if B,K,C,L are concyclic THEN angle BAC=90 the converse (i.e , if angle BAC =90 then B,C,K,L are concyclic ) is not that easy.Log in to reply

Log in to reply

Log in to reply

it is easy to prove that angle BAC=90 if B,K,C,L are concyclic the converse is not that easy.

Log in to reply