1) Solve the equation \(y^3 = x^3 + 8x^2 - 6x + 8\) for positive integer x and y.

2) Consider two positive integer a and b which are such that \(a^{a}b^{b}\) is divisible by 2000. What is minimum value of ab?

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestSolution for \(2^{nd}\) question:\(2000|a^{a}b^{b}\Rightarrow 2|a\text{ or }b \text{ and } 5|a \text{ or } b. \\ \text{Therefore, in every case } 10|ab. \\ \text{Thus, the minimum value of }ab \text{ is obviously }\boxed{10}\text{, possible cases }10^{10}1^{1} \text{ and }1^{1}10^{10}. \)

Log in to reply

Done very well!!!

Log in to reply

Can you post solution of the first one ?

Log in to reply

1)x=0,y=2

Log in to reply

x=9,y=11

Can you provide its solution ?

Log in to reply

Here is the solution: \[y^3=x^3+8x^2-6x+8<x^3+9x^2+27x+27=(x+3)^3 \text{because}\\ x^3=x^3\\ 8x^2<9x^2\\ -6x<27x\\ 8<27\].Now,let us see when \(y^3\) is greater than or equal to \((x+2)^3\) \[\Longrightarrow x^3+6x^2+12x+8 \leq x^3+8x^2-6x+8\\ \Longrightarrow 9 \leq x\].Now,we have that for only one value of \(x\) can the given expression be a cube and that happens when,\[x=9,y=(x+2)=11\].And done!

Log in to reply

Consider \((x+3)^3- y^3 = x^2 +33x +19 \). Discriminant of this quadratic \(\Delta < 0\) and since the coefficient of \(x^2\) is positive, it implies that \((x+3)^3 -y^3 \) is always positive. So, \(y^3 < (x+3)^3\). So, \(y < x+2\).

Log in to reply

Log in to reply

Sorry ,0 is not an positive integer!!

Log in to reply