RMO doubt

Find all primes \(p\) and \(q\) such that \({ p }^{ 2 }+7pq+{ q }^{ 2 }\) is a perfect square.

Note by Swapnil Das
3 years, 3 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

set \(p^2+7pq+q^2=m^2\), so

\((p+q)^2+5pq=m^2\). So \(5pq= (m+p+q)(m-p-q)\). It follows, given that \(m-p-q<m+p+q\), that

\(m-p-q\) is either \(5, p, q, 5p, or 5q\). We can assume \(q>p\) and exclude the last possibility.

  • If \(m-p-q=5\), we get \(m+p+q= pq\) and

\(m+p+q=2p+2q+5\). So \(pq=2p+2q+5\) and \((p-2)(q-2)=9\). So the only solution is p=3 and q=11 so m=19.

  • If \(m-p-q= p\), then \(m+p+q=5q\). Then \(m= 2p+q=4q-p\), which implies \(p=q\). This is excluded.

  • Same for \(m-p-q=q\).

  • If m-p-q=5p. Then m+p+q = q which is impossible.

So (3,11) and (11,3) are the only solutions;

Aditya Kumar - 3 years, 3 months ago

Log in to reply

Did you mean p=/=q?

Gian Sanjaya - 3 years, 3 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...