1)Let *\(1<a_1<a_2<a_3<.....a_{51}<142\)* for positive integers *\(a_1,a_2,a_3,.....a_{51}\)*.

Prove that among the 50 consecutive differences some value must occur at least 12 times.

2)Prove that in any perfect square the three digits immediately to the left of the unit digit cannot be **101**.

Try to solve these 2 problems in 1 hour.

Also try my set RMO.

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestHints 1) Try Pigeonhole

2) Mods.

Log in to reply

@Alan Yan @Nihar Mahajan @Swapnil Das @Mehul Arora @Svatejas Shivakumar @Adarsh Kumar @Sharky Kesa @Shivam Jadhav @Dev Sharma Try this guys!!

Log in to reply

@Rajdeep Dhingra ,I want to ask you something can u please give me your email or whatsapp no.

My email - nkscool21@gmail.com. Reply asap.

Log in to reply

For question 2

The last four digits will be :

1010 - Not possible because perfect squares can't end in odd number of zeroes.

1011 - Not possible because perfect squares aren't of the form 4k + 3.

1012 - Not possible because perfect squares aren't of the form 4k + 2.

1013 - Not possible because perfect squares aren't of the form 8k + 5.

1014 - Not possible because perfect squares aren't of the form 4k + 2.

1015 - Not possible because perfect squares aren't of the form 4k + 3.

1016 - Not possible because perfect squares aren't of the form 16k + 8.

1017 - Not possible because perfect squares aren't of the form 5k + 2.

1018 - Not possible because perfect squares aren't of the form 4k + 2.

1019 - Not possible because perfect squares aren't of the form 4k + 3.

@naitik sanghavi Hope this works!

Log in to reply