I botched up a proof, but I salvaged useful bits and bobs from it.

We prove \(\zeta^2(s) < \zeta(s+1)\zeta(s-1)\) by recalling the Dirichlet series of \(\phi\), the Euler totient function, that is,

\[\sum_{n=1}^{\infty} \frac{\phi(n)}{n^s} = \frac{\zeta(s-1)}{\zeta(s)}\]

Now we know that, for all \(n \geq 2\),

\[\frac{\phi(n)}{n^{s+1}} < \frac{\phi(n)}{n^s} \longrightarrow \sum_{n=2}^{\infty} \frac{\phi(n)}{n^{s+1}} < \sum_{n=2}^{\infty} \frac{\phi(n)}{n^s} \quad \therefore \frac{\zeta(s)}{\zeta(s-1)} < \frac{\zeta(s+1)}{\zeta(s)}\]

\[\therefore \zeta^2(s) < \zeta(s+1)\zeta(s-1)\]

Personally, I think it is interesting, as it invokes a Dirichlet series in a somewhat unexpected way. Also, this implies that \(\lbrace \frac{\zeta(n+1)}{\zeta(n)} \rbrace _{n=2}\) is monotonically increasing.

Challenge: Prove \(2\zeta(s) < \zeta(s+1)+\zeta(s-1)\), using the above result or by the trivial inequality.

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestSince if \(a,b>0\), \(a^{2}+b^{2}>2ab\)

\[2\zeta (s+1)\zeta (s-1)<{ \zeta (s+1) }^{ 2 }+{ \zeta (s-1) }^{ 2 }\]

Following the note's inequality, \[2{ \zeta (s) }^{ 2 }<2\zeta (s+1)\zeta (s-1)<{ \zeta (s+1) }^{ 2 }+{ \zeta (s-1) }^{ 2 }\] \[4{ \zeta (s) }^{ 2 }<{ \zeta (s+1) }^{ 2 }+{ \zeta (s-1) }^{ 2 }+2\zeta (s+1)\zeta (s-1)\] \[2\zeta (s)<{ \zeta (s+1) }+{ \zeta (s-1) }\]

Log in to reply

Or that. I think that spotting that there's a way to slip in AM-GM is easier, but again, that just depends on what prior experience one has.

There is also a proof without the result of the challenge by the trivial inequality, which is kind of obvious.

Log in to reply

Just prove that \( \zeta(s) \) concave downwards, the inequality follows.

Log in to reply

I just realised, Cauchy-Schwarz on \(\ell^2\) works.

Log in to reply

I think you meant \(\lbrace \frac{\zeta(n+1)}{\zeta(n)} \rbrace _{n\ge2}\)

Log in to reply

Same thing, hehe.

Log in to reply

Maybe I misunderstood the notation...

Log in to reply

Log in to reply