# Selfish sets

In the discrete math quiz level 2, I calculated the answer to be 386, or half of the given answer. It seems that the given solutions double-count by including a partition of the original set of 12 members into a subset of n members and its complement as a distinct partition from a subset of 12 - n members and its complement. You only need to count the different subsets with 1 to 5 members who have the property that the set and its subset are both selfish.

If I am wrong please explain my mistake.

Thanks, Fredric Kardon

Note by Fredric Kardon
2 years ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

In future, if you spot any errors with a problem, you can “report” it by selecting "report problem" in the menu. This will notify the problem creator (and eventually staff) who can fix the issues.

Note that you are asked: "How many subsets have the property ...". Yes, if a subset satisfies the property then so does its complement. However, this doesn't mean that you only count them as one (pair). In your approach, after you found those with 1 to 5 members, you have to double the count.

As another example, suppose the question was "How many subsets of 5 elements have the property that both the subset and the complement are non-empty?". Yes, we only need to consider the cases when one of these subsets have 1 or 2 elements. However, we still have to double the count to properly account for the subsets which have 3 or 4 elements.

Staff - 2 years ago

Can you post the link to the problem?

- 2 years ago